A Meeting Scheduling Problem Respecting Time and Space

  • Florian Berger
  • Rolf Klein
  • Doron Nussbaum
  • Jörg-Rüdiger Sack
  • Jiehua Yi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

We consider the problem of determining suitable meeting times and locations for a group of participants wishing to schedule a new meeting subject to already scheduled meetings possibly held at a number of different locations. Each participant must be able to reach the new meeting location, attend for the entire duration, and reach the next meeting location on time. In particular, we give a solution to the problem instance where each participant has two scheduled meetings separated by a free time interval. In [2], we presented an O(n logn) algorithm for n participants obtained by purely geometrical arguments. Our new approach uses the concept of LP-type problems and leads to a randomized algorithm with expected running time O(n).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BenHassine, A., Ho, T.: An agent-based approach to solve dynamic meeting scheduling problems with preferences. Engineering Applications of Artificial Intelligence 20(6), 857–873 (2007)CrossRefGoogle Scholar
  2. 2.
    Klein, R., Yi, J., Nussbaum, D., Sack, J.-R.: How to Fit in another Meeting. In: 2nd International Conference on Collaborative Computing (CollaborateCom 2006), Atlanta, November 2006, IEEE, Los Alamitos (2006), http://ieeexplore.ieee.org Google Scholar
  3. 3.
    Matoušek, J.: On Geometric Optimization with Few Violated Constraints. In: Symposium on Computational Geometry, pp. 312–321 (1994)Google Scholar
  4. 4.
    Megiddo, N.: The weighted Euclidean 1-center problem. Math. Oper. Res. 8, 498–504 (1983)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83, 113–115 (1921)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Shakshuki, E., Koo, H.-H., Benoit, D., Silver, D.: A distributed multi-agent meeting scheduler. Journal of Computer and System Sciences 74(2), 279–296 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 569–579. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Florian Berger
    • 1
  • Rolf Klein
    • 1
  • Doron Nussbaum
    • 2
  • Jörg-Rüdiger Sack
    • 2
  • Jiehua Yi
    • 2
  1. 1.Institute of Computer ScienceUniversity of BonnBonnGermany
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations