On the Minimum Hitting Set of Bundles Problem

  • Eric Angel
  • Evripidis Bampis
  • Laurent Gourvès
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

We consider a natural generalization of the classical minimum hitting set problem, the minimum hitting set of bundles problem (mhsb) which is defined as follows. We are given a set \(\mathcal{E}=\{e_1, e_2 , \ldots , e_n\}\) of n elements. Each element ei (i = 1, ...,n) has a non negative cost ci. A bundleb is a subset of \(\mathcal{E}\). We are also given a collection \(\mathcal{S}=\{S_1, S_2 , \ldots , S_m\}\) of m sets of bundles. More precisely, each set Sj (j = 1, ..., m) is composed of g(j) distinct bundles \(b_j^1, b_j^2, \ldots , b_j^{g(j)}\). A solution to mhsb is a subset \(\mathcal{E}' \subseteq \mathcal{E}\) such that for every \(S_j \in \mathcal{S}\) at least one bundle is covered, i.e. \(b_j^l \subseteq \mathcal{E}'\) for some l ∈ {1,2, ⋯ ,g(j)}. The total cost of the solution, denoted by \(C(\mathcal{E'})\), is \(\sum_{\{i \mid e_i \in \mathcal{E'}\}} c_i\). The goal is to find a solution with minimum total cost.

We give a deterministic \(N(1-(1-\frac{1}{N})^M)\)-approximation algorithm, where N is the maximum number of bundles per set and M is the maximum number of sets an element can appear in. This is roughly speaking the best approximation ratio that we can obtain since, by reducing mhsb to the vertex cover problem, it implies that mhsb cannot be approximated within 1.36 when N = 2 and N − 1 − ε when N ≥ 3. It has to be noticed that the application of our algorithm in the case of the mink −sat problem matches the best known approximation ratio.

Keywords

minimum hitting set mink −sat approximation algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex optimization problems. Journal of Computer and System Sciences 21(1), 136–153 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Avidor, A., Zwick, U.: Approximating MIN 2-SAT and MIN 3-SAT. Theory of Computer Systems 38(3), 329–345 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertsimas, D., Teo, C.-P., Vohra, R.: On dependent randomized rounding algorithms. Operation Research Letters 24(3), 105–114 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. In: Proceedings of STOC 2003, pp. 595–601 (2003)Google Scholar
  5. 5.
    Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of STOC 2002, pp. 33–42 (2002)Google Scholar
  6. 6.
    Halperin, E.: Improved Approximation Algorithms for the Vertex Cover Problem in Graphs and Hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kohli, R., Krishnamurty, R., Mirchandani, P.: The minimum satisfiability problem. SIAM Journal on Discrete Mathematics 7, 275–283 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Marathhe, M.V., Ravi, S.S.: On approximation algorithms for the minimum satisfiability problem. Information Processing Letters 58, 23–29 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Toroslu, I.H., Cosar, A.: Dynamic programming solution for multiple query optimization problem. Information Processing Letters 92(3), 149–155 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sellis, T.K.: Multiple-Query Optimization. Transactions on Database Systems 13(1), 23–52 (1988)CrossRefGoogle Scholar
  11. 11.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eric Angel
    • 1
  • Evripidis Bampis
    • 1
  • Laurent Gourvès
    • 2
  1. 1.IBISC CNRSUniversité d’EvryFrance
  2. 2.CNRS LAMSADEUniversité de Paris-DauphineFrance

Personalised recommendations