Advertisement

A Scalable Hybrid Multi-robot SLAM Method for Highly Detailed Maps

  • Max Pfingsthorn
  • Bayu Slamet
  • Arnoud Visser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5001)

Abstract

Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by Howard et al. This method maintains a graph with sensor observations stored in vertices and pose differences including uncertainty information stored in edges. Through its graph structure, updates are local and can be efficiently communicated to peers. The graph links represent known traversable space, and facilitate tasks like path planning. We demonstrate that our SLAM method produces very detailed maps without sacrificing scalability. The presented method was used by the UvA Rescue Virtual Robots team, which won the Best Mapping Award in the RoboCup Rescue Virtual Robots competition in 2006.

Keywords

Mobile Robot Iterative Close Point Iterative Close Point Occupancy Grid Sensor Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thrun, S.: Robotic Mapping: A Survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann (2002)Google Scholar
  2. 2.
    Moravec, H.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9, 61–74 (1988)Google Scholar
  3. 3.
    Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Tomatis, N., Nourbakhsh, I., Siegwart, R.: Hybrid simultaneous localization and map building: Closing the loop with multi-hypotheses tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington DC, USA, May 11 - 15 (2002)Google Scholar
  5. 5.
    Bosse, M., Newman, P., Leonard, J., Teller, S.: An Atlas Framework for Scalable Mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2003)Google Scholar
  6. 6.
    Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I., Choset, H.: The hierarchical atlas. IEEE Transactions on Robotics and Automation 21, 473–481 (2005)Google Scholar
  7. 7.
    Howard, A., Sukhatme, G.S., Matarić, M.J.: Multi-robot mapping using manifold representations. In: Proceedings of the IEEE - Special Issue on Multi-robot Systems (2006)Google Scholar
  8. 8.
    Balakirsky, S., Scrapper, C., Carpin, S., Lewis, M.: Usarsim: providing a framework for multi-robot performance evaluation. In: Proceedings of PerMIS 2006 (2006)Google Scholar
  9. 9.
    Carpin, S., Wang, J., Lewis, M., Birk, A., Jacoff, A.: High fidelity tools for rescue robotics: Results and perspectives. In: Proceedings of the 2005 RoboCup Symposium (2005)Google Scholar
  10. 10.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, AAAI (2002)Google Scholar
  12. 12.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transaction on Robotics 23(1), 34–46 (2007)CrossRefGoogle Scholar
  13. 13.
    Lu, F., Milios, E.: Globally Consistent Range Scan Alignment for Environment Mapping. Autonomous Robots 4, 333–349 (1997)CrossRefGoogle Scholar
  14. 14.
    Pfister, S.T., Kriechbaum, K.L., Roumeliotis, S.I., Burdick, J.W.: A Weighted Range Sensor Matching Algorithm for Mobile Robot Displacement Estimation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2002)Google Scholar
  15. 15.
    Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. Journal of Intelligent and Robotic Systems 18, 249–275 (1997)CrossRefGoogle Scholar
  16. 16.
    Slamet, B., Pfingsthorn, M.: ManifoldSLAM: a Multi-Agent Simultaneous Localization and Mapping System for the RoboCup Rescue Virtual Robots Competition. Master’s thesis, Universiteit van Amsterdam (2006)Google Scholar
  17. 17.
    Olson, E., Leonard, J., Teller, S.: Fast Iterative Optimization of Pose Graphs with Poor Initial Estimates. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2262–2269 (2006)Google Scholar
  18. 18.
    Zivkovic, Z.: IEEE/RSJ IROS 2006 Workshop: From sensors to human spatial concepts (2006)Google Scholar
  19. 19.
    Radish: The robotics data set repository (-)Google Scholar
  20. 20.
    Yamauchi, B.: A frontier based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, July 10-11, 1997 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Max Pfingsthorn
    • 1
  • Bayu Slamet
    • 2
  • Arnoud Visser
    • 2
  1. 1.Jacobs University BremenBremenGermany
  2. 2.Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations