Skip to main content

The Differential Evolution Algorithm as Applied to Array Antennas and Imaging

  • Chapter
Book cover Advances in Differential Evolution

Part of the book series: Studies in Computational Intelligence ((SCI,volume 143))

Summary

The application of the differential evolution method in two important areas of applied electromagnetics is discussed in this chapter. The first one refers to the synthesis and design of array antennas, for which differential evolution, as well as other evolutionary algorithms, is now considered a fundamental design tool. The second one concerns the diagnostic applications faced as a result of using radiofrequency and microwave imaging techniques. Being based on the inverse scattering problem, these techniques suffer from nonlinearity and ill posedness. The differential evolution method has been successfully proposed for optimizing this multimodal and complex inverse problem.

The chapter includes a brief review of some results recently published in the scientific literature concerning the application of differential evolution to the above-mentioned problems. Moreover, the main contributions of the authors in these areas are reviewed and discussed. Finally, some new results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, J.M., Ramat-Samii, Y.: Genetic algorithms in engineering electromagnetics. IEEE Antennas Propagat. Mag. 39(4), 7–21 (1997)

    Article  Google Scholar 

  2. Haupt, R.L.: An introduction to genetic algorithms for electromagnetics. IEEE Antennas Propagat. Mag. 37(2), 7–15 (1995)

    Article  Google Scholar 

  3. Weile, D.S., Michielssen, E.: Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. Antennas Propagat. 45, 343–353 (1997)

    Article  Google Scholar 

  4. Rahmat-Samii, Y., Michielssen, E.: Electromagnetic Optimization by Genetic Algorithms. Wiley, New York (1999)

    MATH  Google Scholar 

  5. Price, K.: An introduction to differential differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization. McGraw-Hill, New York (1999)

    Google Scholar 

  6. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts towards memetic algorithms. Tech. Rep. Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, California, USA (1989)

    Google Scholar 

  8. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propagat. 52(2), 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  9. Davis, L.: Genetic Algorithms and Simulated Annealing. Morgan Kaufmann Publishers Inc., San Francisco (1987)

    MATH  Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  11. Yang, S., Gan, Y.B., Qing, A.: Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Antennas Wireless Propagat. Lett. 1, 173–175 (2002)

    Article  Google Scholar 

  12. Kurup, D.G., Himdi, M., Rydberg, A.: Synthesis of uniform amplitude unequally spaced antenna array using the differential evolution algorithm. IEEE Trans. Antenna Propagat. 51(9), 2210–2217 (2003)

    Article  Google Scholar 

  13. Yang, S., Nie, Z.: Mutual coupling compensation in time modulated linear antenna array. IEEE Trans. Antennas Propagat. 53(12), 4182–4185 (2005)

    Article  Google Scholar 

  14. Balanis, C.A.: Antenna theory: analysis and design. Wiley, New York (1982)

    Google Scholar 

  15. Yang, S., Gan, Y.B., Tan, P.K.: A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wireless Propagat. Lett. 2, 285–287 (2005)

    Article  Google Scholar 

  16. McNamara, D.A.: Synthesis of sum and difference patterns for two-section monopulse arrays. Inst. Elect. Eng. Proc. pt H 135(6), 371–374 (1996)

    Google Scholar 

  17. Ares, F., Rodrìguez, J.A., Moreno, E.: Optimal compromise among sum and difference patterns. J. Electromagnetic Waves and Appl. 10, 1543–1555 (1996)

    Article  Google Scholar 

  18. Lòpez, P., Rodrìguez, J.A., Ares, F., Moreno, E.: Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray configurations and weights. IEEE Trans. Antennas Propagat. 49(11), 1606–1608 (2001)

    Article  Google Scholar 

  19. Caorsi, S., Massa, A., Pastorino, M., Randazzo, A.: Optimization of the difference patterns for monopulse antennas by an hybrid real/integer-coded differential evolution method. IEEE Trans. Antennas Propagat. 53(1), 372–376 (2005)

    Article  Google Scholar 

  20. Massa, A., Pastorino, M., Randazzo, A.: Optimization of the directivity of a monopulse antenna with a subarray weighting by an hybrid differential evolution method. IEEE Antennas Wireless Propagat. Lett. 5, 155–158 (2006)

    Article  Google Scholar 

  21. Chiu, C.C., Liu, P.T.: Image reconstruction of a perfectly conducting cylinder by the genetic algorithm. IEE Proc. Microwave Antennas Propag. 143 (1996)

    Google Scholar 

  22. Kent, S., Gunel, T.: Dielectric permittivity estimation of cylindrical objects using genetic algorithm. J. Microwave Power and Electromagn. Energy 32, 109–113 (1997)

    Google Scholar 

  23. Caorsi, S., Massa, A., Pastorino, M., Raffetto, M., Randazzo, A.: Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm. IEEE Trans. Antennas Propagat. 51, 2878–2884 (2003)

    Article  Google Scholar 

  24. Qian, Z.P., Hong, W.: Image reconstruction of conducting cylinder based on FD-MEI and genetic algorithm. In: Proc. IEEE APS Int. Symp., vol. 2, pp. 718–721 (1998)

    Google Scholar 

  25. Caorsi, S., Massa, A., Pastorino, M.: A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE Trans. Geosci Remote Sensing, special issue on Computational Wave Issues in Remote Sensing, Imaging and Target Identification, Propagation, and Inverse Scattering 38, 1697–1708 (2000)

    Google Scholar 

  26. Balanis, C.A.: Advanced engineering electromagnetics. Wiley, New York (1989)

    Google Scholar 

  27. Dourthe, C., Pichot, C., Dauvignac, J.Y., Cariou, J.: Inversion algorithm and measurement system for microwave tomography of buried object. Radio Sci. 35, 1097–1108 (2000)

    Article  Google Scholar 

  28. Cui, T.J., Chew, W.C.: Diffraction tomographic algorithm for the detection of three-dimensional object buried in a lossy half-space. IEEE Trans. Geosci. Remote Sensing 50, 42–49 (2002)

    Google Scholar 

  29. Ramananjaona, C., Lambert, M., Lesselier, D., Zolésio, J.P.: Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation. Inverse Problems 17, 1087–1111 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cui, T.J., Aydiner, A.A., Chew, W.C., Wright, D.L., Smith, D.W.: Three-dimensional imaging of buried object in very lossy earth by inversion of VETEM data. IEEE Trans. Geosci. Remote Sensing 41, 2197–2209 (2003)

    Article  Google Scholar 

  31. Smith, G.S., Petersson, L.E.R.: On the use of evanescent electromagnetic waves in the detection and identification of object buried in lossy soil. IEEE Trans. Antennas Propagat. 48, 1295–1300 (2000)

    Article  Google Scholar 

  32. Micolau, G., Saillard, M., Borderies, P.: DORT method as applied to ultrawideband signals for detection of buried objects. IEEE Trans. Geosci. Remote Sensing 41, 1813–1820 (2003)

    Article  Google Scholar 

  33. Ferrayé, R., Dauvignac, J.Y., Pichot, C.: An inverse scattering method based on contour deformation by means of a level set method using frequency hopping technique. IEEE Trans. Antennas Propagat. 51, 1100–1112 (2003)

    Article  Google Scholar 

  34. Zhang, Z.Q., Liu, Q.H.: Two nonlinear inverse methods for electromagnetic induction measurements. IEEE Trans. Geosci. Remote Sensing 39, 1331–1339 (2001)

    Article  Google Scholar 

  35. Lambert, M., Lesselier, D.: Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields. Inverse Problems 16, 563–576 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Chommeloux, L., Pichot, C., Bolomey, J.C.: Electromagnetic modeling for microwave imaging of cylindrical buried inhomogeneities. IEEE Trans. Microwave Theory Tech. 34, 1064–1076 (1986)

    Article  Google Scholar 

  37. Hughes, D., Zoughi, R.: A method for evaluating the dielectric properties of composites using a combined embedded modulated scattering and near-field microwave nondestructive testing technique. In: Proc. 18th IEEE Instrum. Meas. Technol. Conf., pp. 1882–1886 (2001)

    Google Scholar 

  38. Kleinman, R.E., van den Berg, P.M.: Two-dimensional location and shape reconstruction. Radio Sci. 29, 1157–1169 (1994)

    Article  Google Scholar 

  39. Tijhuis, A.G., Belkebir, K., Litman, A.C.S., de Hon, B.: Theoretical and computational aspects of 2-D inverse profiling. IEEE Trans. Geosci. Remote Sensing 39, 1316–1330 (2001)

    Article  Google Scholar 

  40. Franza, O., Joachimowicz, N., Bolomey, J.C.: SICS: A sensor interaction compensation scheme for microwave imaging. IEEE Trans. Antennas Propagat. 50, 211–216 (2002)

    Article  Google Scholar 

  41. Massa, A., Pastorino, M., Randazzo, A.: Reconstruction of Two-Dimensional Buried Objects by a Differential Evolution Method. Inverse Problems, special session on Electromagnetic Characterization of Buried Obstacles 20(6), S135–S150 (2004)

    Google Scholar 

  42. Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York (1949)

    MATH  Google Scholar 

  43. Storn, R.: On the Usage of Differential Evolution for Function Optimization. In: Proc. 1996 Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS 1996), pp. 519–523 (1996)

    Google Scholar 

  44. Michalski, K.A.: Electromagnetic imaging of elliptical-cylindrical conductors and tunnel using a differential evolution algorithm. Microwave Opt. Technol. Lett. 28(3), 164–169 (2001)

    Article  Google Scholar 

  45. Michalski, K.A.: Electromagnetic imaging of circular-cylindrical conductors and tunnels using a differential evolution algorithm. Microwave Opt. Technol. Lett. 27(5), 330–334 (2000)

    Article  Google Scholar 

  46. Bonnard, S., Vincent, P., Saillard, M.: Cross-borehole inverse scattering using a boundary finite-element method. Inverse Problems 14, 521–534 (1998)

    Article  MATH  Google Scholar 

  47. Qing, A.: Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propagat. 51(6), 1251–1262 (2003)

    Article  MathSciNet  Google Scholar 

  48. Qing, A.: Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES). IEEE Trans. Antennas Propagat. 52(5), 1223–1229 (2004)

    Article  Google Scholar 

  49. Qing, A.: Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems. IEEE Trans. Geosci. Remote Sensing 44(1), 116–125 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uday K. Chakraborty

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Massa, A., Pastorino, M., Randazzo, A. (2008). The Differential Evolution Algorithm as Applied to Array Antennas and Imaging. In: Chakraborty, U.K. (eds) Advances in Differential Evolution. Studies in Computational Intelligence, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68830-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68830-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68827-3

  • Online ISBN: 978-3-540-68830-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics