Advances in Differential Evolution pp 1-31

Part of the Studies in Computational Intelligence book series (SCI, volume 143)

| Cite as

Differential Evolution Research – Trends and Open Questions

  • Rainer Storn

Summary

Differential Evolution (DE), a vector population based stochastic optimization method has been introduced to the public in 1995. During the last 10 years research on and with DE has reached an impressive state, yet there are still many open questions, and new application areas are emerging. This chapter introduces some of the current trends in DE-research and touches upon the problems that are still waiting to be solved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces (1995) Technical Report TR-95-012, ICSI (March 1995), ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z
  2. 2.
    Storn, R., Price, K.V.: Minimizing the real functions of the ICEC 1996 contest by differential evolution. In: Proceedings of the 1996 IEEE international conference on evolutionary computation, Nagoya, Japan, pp. 842–844. IEEE Press, New York (1996)CrossRefGoogle Scholar
  3. 3.
    Storn, R.: On the usage of differential evolution for function optimization. In: Smith, M.H., Lee, M.A., Keller, J., Yen, J. (eds.) Proceedings of the 1996 biennial conference of the North American fuzzy information processing society – NAFIPS, Berkeley, CA, USA, June 19–22, pp. 519–523. IEEE Press, New York (1996)CrossRefGoogle Scholar
  4. 4.
    Price, K., Storn, R.: Differential evolution: a simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22, 18–24 (1997)Google Scholar
  5. 5.
    Storn, R., Price, K.V.: Differential Evolution – a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Storn, R.: Homepage of DE (2002), http://www.icsi.berkeley.edu/~storn/code.html
  7. 7.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution – A Practical Approach to Global Optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. 8.
    Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In: Matoušek, R., Ošmera, P. (eds.) Proceedings of MENDEL 2002, 8th international conference on soft computing, Brno, Czech Republic. Brno University of Technology, Faculty of Mechanical Engineering, June 5–7, pp. 62–67. Institute of Automation and Computer Science, Brno (2002)Google Scholar
  9. 9.
    Lampinen, J.: A bibliography of differential evolution algorithms. Technical report, Lappeenranta University of Technology, Department of Information Technology, Laboratory of Information Processing(October 16, 1999), http://www.lut.fi/~jlampine/debiblio.htm
  10. 10.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  11. 11.
    Gämperle, R., Müller, S.D., Koumoutsakos, P.: A Parameter Study for Differential Evolution. In: Grmela, A., Mastorakis, N.E. (eds.) Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298. WSEAS Press (2002)Google Scholar
  12. 12.
    Liu, J., Lampinen, J.: On setting the control parameters of the differential evolution method. In: Matoušek, R., Ošmera, P. (eds.) Proc. of Mendel 2002, 8th International Conference on Soft Computing, pp. 11–18 (2002)Google Scholar
  13. 13.
    Liu, J., Lampinen, J.: Adaptive Parameter Control of Differential Evolution. In: Matoušek, R., Ošmera, P. (eds.) Proc. of Mendel 2002, 8th International Conference on Soft Computing, pp. 19–26 (2002)Google Scholar
  14. 14.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm Soft Computing – A Fusion of Foundations. Methodologies and Applications 9(6), 448–462 (2005)MATHGoogle Scholar
  15. 15.
    Rönkkönen, J., Lampinen, J.: On using normally distributed mutation step length for the differential evolution algorithm. In: 9th Int. Conf. Soft Computing (MENDEL 2002), Brno, Czech Republic, June 5-7, 2002, pp. 11–18 (2003)Google Scholar
  16. 16.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: 2005 IEEE Congress Evolutionary Computation, Edinburgh, UK, September 2-5, vol. 2, pp. 1785–1791 (2005)Google Scholar
  17. 17.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution, A Comparative Study on Numerical Benchmark Problems. IEEE Trans. on Evol. Comp. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  18. 18.
    Schwefel, H.-P.: Numerical optimization of computer models. Wiley, New York (1981)MATHGoogle Scholar
  19. 19.
    Price, K.V., Rönkkönen, J.I.: Comparing the Uni-Modal Scaling Performance of Global and Local Selection in a Mutation-Only Differential Evolution Algorithm. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, July 16-21, pp. 2034–2041 (2006)Google Scholar
  20. 20.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)MATHGoogle Scholar
  21. 21.
    Lampinen, J., Zelinka, I.: On Stagnation of the Differential Evolution Algorithm. In: Ošmera, P. (ed.) Proceedings of MENDEL 2000, 6th International Mendel Conference on Soft Computing, Brno, Czech Republic. Brno University of Technology, Faculty of Mechanical Engineering, June 7–9, pp. 76–83. Institute of Automation and Computer Science, Brno (Czech Republic) (2000)Google Scholar
  22. 22.
    Goldberg, D.E.: Genetic algorithms in search optimization and machine learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  23. 23.
    Karaboga, D., Ökdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turkish Journal of Electrical Engineering & Computer Sciences 12(1), 53–60 (2004)Google Scholar
  24. 24.
    Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO 2005), pp. 991–998 (2005)Google Scholar
  25. 25.
    Das, S., Konar, A., Chakraborty, U.K.: Improved differential evolution algorithms for handling noisy optimization problems. In: Proc. IEEE Congress on Evolutionary Computation, Edinburgh (September 2005)Google Scholar
  26. 26.
    Storn, R.: Digital Filter Design Program FIWIZ (2000), http://www.icsi.berkeley.edu/~storn/fiwiz.html
  27. 27.
    Storn, R., Lampinen, J.: New DE Strategy, private Email communication (2000)Google Scholar
  28. 28.
    Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions for continuous variables with the simulated annealing algorithm. ACM Transactions on Mathematical Software, 272–280 (March 1987)Google Scholar
  29. 29.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-Based Differential Evolution Algorithms. In: 2006 IEEE Congress on Evolutionary Computation, Vancouver, July 16-21, pp. 2010–2017 (2006)Google Scholar
  30. 30.
    Ali, M.M.: Synthesis of the β-distribution as an aid to stochastic global optimization. Computational Statistics and Data Analysis (accepted for publication, 2006)Google Scholar
  31. 31.
    Feoktistov, V.: Differential Evolution - In Search of Solutions. Springer, Heidelberg (2006)MATHGoogle Scholar
  32. 32.
    Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. In: Lampinen, J., Storn, R. (eds.) Differential Evolution, ch. 6, pp. 123–166. Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Martinek, P., Maršík, J.: Optimized Design of Analogue Circuits Using DE Algorithms. In: EDS 2005 IMAPS CS International Conference Proceedings, pp. 385–389. Vysoké učení technické v Brně, Brno (2005)Google Scholar
  34. 34.
    Martinek, P., Tichá, D.: Analog Filter Design Based on Evolutionary Algorithms. In: AEE 2005 - Proceedings of the 4th WSEAS International Conference on: Applications of Electrical Engineering, vol. 1, pp. 111–115. WSEAS, Athens (2005)Google Scholar
  35. 35.
    Vancorenland, P.J., De Ranter, C., Steyaert, M., Gielen, G.G.E.: Optimal RF design using smart evolutionary algorithms. In: Proceedings of 37th Design Automation Conference, Los Angeles, June 5-9, pp. 7–10 (2000)Google Scholar
  36. 36.
    Francken, K., Vancorenland, P., Gielen, G.: DAISY: a simulation-based high-level synthesis tool for Delta Sigma modulators. In: Proceedings of IEEE/ACM International Conference on Computer Aided Design. ICCAD 2000, San Jose, CA, USA, November 5-9, pp. 188–192 (2000)Google Scholar
  37. 37.
    Storn, R.M.: System design by constraint adaptation and differential evolution. IEEE Transactions on Evolutionary Computation 3(1), 22–34 (1999)CrossRefGoogle Scholar
  38. 38.
    Storn, R.: On the usage of differential evolution for function optimization. In: Smith, M.H., Lee, M.A., Keller, J., Yen, J. (eds.) Proceedings of the North American Fuzzy Information Processing Society, pp. 519–523. IEEE Press, New York (1996)CrossRefGoogle Scholar
  39. 39.
    Report NDT3-04-2006: Differential Evolution for a Better Approximation to the Arctangent Function (April 26, 2006), http://www.nanodottek.com/Documents.htm
  40. 40.
    Ursem, R.K., Vadstrup, P.: Parameter identification of induction motors using differential evolution. In: 2003 Congress on Evolutionary Computation, CEC 2003, vol. 2, pp. 790–796 (2003)Google Scholar
  41. 41.
    Madisetti, V.K., Williams, D.B.: The Digital Signal Processing Handbook. Section VI, Adaptive Filtering. CRC Press, IEEE Press (1998)Google Scholar
  42. 42.
    Murthy, C.S.R., Manoj, B.S.: Ad Hoc Wireless Networks: Architectures and Protocols. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  43. 43.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution – A Practical Approach to Global Optimization. In: Chakraborty, N. (ed.) Genetic Algorithms and Related Techniques for Optimizing Si–H Clusters: A Merit Analysis for Differential Evolution, ch. 7.1. Springer, Berlin (2005)Google Scholar
  44. 44.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution – A Practical Approach to Global Optimization. In: Hancox, E.P., Derksen, R.W. (eds.) Optimization of an Industrial Compressor Supply System, ch. 7.3. Springer, Berlin (2005)Google Scholar
  45. 45.
    Kasemir, K.U., Betzler, K.: Detecting ellipses of limited eccentricity in images with high noise levels. Image and Vision Computing 21(2), 221–227 (2003)CrossRefGoogle Scholar
  46. 46.
    Laskari, E.C., Meletiou, G.C., Vrahatis, M.N.: The Discrete Logarithm Problem as an Optimization Task: A First Study. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004) (IASTED 2004), Innsbruck, Austria. ACTA Press (2004) ISBN: 0-88986-375-X, ISSN: 1027-2666Google Scholar
  47. 47.
    Laskari, E.C., Meletiou, G.C., Vrahatis, M.N.: Utilizing Evolutionary Computation Methods for the Design of S-boxes. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456. Springer, Heidelberg (2007)Google Scholar
  48. 48.
    Henkel, W., Kessler, T.: Maximizing the Channel Capacity of Multicarrier Transmission by Suitable Adaptation of the Time-Domain Equalizer. IEEE Transactions on Communications 48(12), 2000–2004 (2000)CrossRefGoogle Scholar
  49. 49.
    Storn, R.: Differential Evolution – Ein praktischer Ansatz zur globalen Parameteroptimierung, Vortrag an der TU München, Seminar Elektronische Bauelemente (May 17, 2004)Google Scholar
  50. 50.
    Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Heidelberg (2004)MATHGoogle Scholar
  51. 51.
    Ruettgers, M.: Differential evolution: a method for optimization of real scheduling problems. Technical report at the International Computer Science Institute, TR-97-013, pp. 1–8 (1997)Google Scholar
  52. 52.
    Babu, B.V., Rakesh, A.: A Differential Evolution Approach for Global Optimization of MINLP Problems. In: Proceedings of 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL 2002), Singapore, November 18-22, Paper No. 1033, vol. 2, pp. 880–884 (2002)Google Scholar
  53. 53.
    Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete optimization algorithms with Pascal programs. Prentice Hall, New Jersey (1983)MATHGoogle Scholar
  54. 54.
    Krink, T., Filipic, B., Fogel, G.B., Thomsen, R.: Noisy Optimization Problems - A Particular Challenge for Differential Evolution? In: Proceedings of 2004 Congress on Evolutionary Computation, pp. 332–339. IEEE Press, Piscataway (2004)CrossRefGoogle Scholar
  55. 55.
    Markon, S., Arnold, D.V., Baeck, T., Beielstein, T., Beyer, H.-G.: Thresholding - a selection operator for noisy ES. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, May 27-30, pp. 465–472. IEEE Press, Piscataway (2001)CrossRefGoogle Scholar
  56. 56.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-Based Differential Evolution for Optimization of Noisy Problems. In: 2006 IEEE Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Vancouver, July 16-21, pp. 1865–1872 (2006)Google Scholar
  57. 57.
    Mendes, R., Mohais, A.S.: DynDE: a differential evolution for dynamic optimization problems. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2808–2815 (September 2005)Google Scholar
  58. 58.
    Crutchley, D.A., Zwolinski, M.: Using Evolutionary and Hybrid Algorithms for DC Operating Point Analysis of Nonlinear Circuits. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Honolulu, Hawaii, May 12-17, vol. 1, pp. 753–758 (2002) ISBN 0-7803-7282-4 Google Scholar
  59. 59.
    Crutchley, D., Zwolinski, M.: Globally convergent algorithms for dc operating point analysis of nonlinear circuits. IEEE Transactions on Evolutionary Computing 7(1), 2–10 (2003)CrossRefGoogle Scholar
  60. 60.
    Crutchley, D.: Globally Convergent Algorithms for DC Operating Point Analysis of Nonlinear Electronic Circuits, PhD Dissertation, University of Southampton (2003)Google Scholar
  61. 61.
    Antoniou, A.: Digital Filters – Analysis, Design, and Applications. McGraw-Hill, New York (1993)Google Scholar
  62. 62.
    Dos Santos Coelhol, L., Mariani, V.C.: Combining of Differential Evolution and Implicit Filtering Algorithm Applied to Electromagnetic Design Optimization, Pontifical Catholic University of Parana, Technical ReportGoogle Scholar
  63. 63.
    Rogalsky, T., Derksen, R.W.: Hybridization of Differential Evolution for Aerodynamic Design. In: Proceedings of the 8th Annual Conference of the Computational Fluid Dynamics Society of Canada, June 11–13, pp. 729–736 (2000)Google Scholar
  64. 64.
    Mydur, R.: Application of Evolutionary Algorithms & Neural Networks to Electromagnetic Inverse Problems. M.Sc. thesis, Texas A&M University, Texas, USA (2000)Google Scholar
  65. 65.
    Nasimul Noman, N., Iba, H.: Enhancing Differential Evolution Performance with Local Search for High Dimensional Function Optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO 2005), pp. 967–974 (2005)Google Scholar
  66. 66.
    Yuret, D., de la Maza, M.: Dynamic hill climbing: Overcoming the limitations of optimization techniques. In: The Second Turkish Symposium on Artifcial Intelligence and Neural Networks, pp. 208–212 (1993)Google Scholar
  67. 67.
    Scales, L.E.: Introduction to non-linear optimization. Macmillan, London (1985)Google Scholar
  68. 68.
    Chang, C.S., Xu, D.Y., Quek, H.B.: Pareto-optimal set based multi-objective tuning of fuzzy automatic train operation for mass transit system. IEEE Proceedings on Electric Power Applications 146(5), 577–583 (1999)CrossRefGoogle Scholar
  69. 69.
    Wang, F.-S., Sheu, J.-W.: Multi-objective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast. Chemical Engineering Science 55(18), 3685–3695 (2000)CrossRefGoogle Scholar
  70. 70.
    Abbass, H.A., Sarker, R., Newton, C.: PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 congress on evolutionary computation, vol. 2, pp. 971–978. IEEE Press, Piscataway (2001)CrossRefGoogle Scholar
  71. 71.
    Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, May 2002, pp. 831–836 (2002b)Google Scholar
  72. 72.
    Madavan, N.K.: Multiobjective optimization using a Pareto Differential Evolution approach. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, May 2002, pp. 1145–1150 (2002)Google Scholar
  73. 73.
    Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: CEC 2005, Edinburgh, Scotland, pp. 443–450. IEEE Service Center (2005)Google Scholar
  74. 74.
    Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Examination of Stopping Criteria for Differential Evolution based on a Power Allocation Problem. In: 10th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, May 18-19 (2006)Google Scholar
  75. 75.
    Zaharie, D., Petcu, D.: Adaptive Pareto Differential Evolution and its Parallelization. In: Proc. of 5th International Conference on Parallel Processing and Applied Mathematics, Czestochowa, Poland (September 2003)Google Scholar
  76. 76.
    Zaharie, D., Petcu, D.: Parallel implementation of multi-population differential evolution. In: Sinaia, R., Grigoras, D., et al. (eds.) Proc. of 2nd Workshop on Concurrent Information Processing and Computing (CIPC 2003) (2003)Google Scholar
  77. 77.
    Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel Differential Evolution. In: Proceedings of the 2004 congress on evolutionary computation (CEC 2004), Portland OR, June 19-23, pp. 2023–2029 (2004)Google Scholar
  78. 78.
    Kwedlo, W., Bandurski, K.: A Parallel Differential Evolution Algorithm. In: International Symposium on Parallel Computing in Electrical Engineering, 2006. PAR ELEC 2006, pp. 319–324 (2006)Google Scholar
  79. 79.
    Angira, R., Babu, B.V.: Performance of modified differential evolution for optimal design of complex and non-linear chemical processes. Journal of Experimental & Theoretical Artificial Intelligence 18(4), 501–512 (2006)CrossRefGoogle Scholar
  80. 80.
    Goldstein, H.: Cure For The Multicore Blues. IEEE Spectrum, 36–39 (January 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rainer Storn
    • 1
  1. 1.Rohde & Schwarz GmbH & Co KGMünchenGermany

Personalised recommendations