A Hybrid Fault-Tolerant Algorithm for MPLS Networks

  • Maria Hadjiona
  • Chryssis Georgiou
  • Maria Papa
  • Vasos Vassiliou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5031)

Abstract

In this paper we present a new fault tolerant, path maintaining, algorithm for use in MPLS based networks. The novelty of the algorithm lies upon the fact that it is the first to employ both path restoration mechanisms typically used in MPLS networks: protection switching and dynamic path rerouting. In addition, it is the first algorithm to adequately satisfy all four criteria which we consider very important for the performance of the restoration mechanisms in MPLS networks: fault recovery time, packet loss, packet reordering and tolerance of multiple faults. Simulation results indicate the performance advantages of the proposed hybrid algorithm (with respect to the four criteria), when compared with other algorithms that employ only one of the two restoration mechanisms.

Keywords

MPLS fault tolerance algorithms rerouting protection switching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Bremler-Barr, A., Kaplan, H., Cohen, E., Merritt, M.: Restoration by Path Concatenation: Fast Recovery of MPLS Paths. In: Proceedings of the twentieth annual ACM symposium on Principles of Distributed Computing, pp. 43–52 (2001)Google Scholar
  2. 2.
    Ahn, G., Jang, J., Chun, W.: An Efficient Rerouting Scheme for MPLS-Based Recovery and Its Performance Evaluation. Telecommunication Systems 19(3-4), 481–495 (2002)CrossRefGoogle Scholar
  3. 3.
    Bartos, R., Raman, M.: A Heuristic Approach to Service Restoration in MPLS Networks. In: Proceeding of ICC 2001, pp. 117–121 (2001)Google Scholar
  4. 4.
    Bartos, R., Raman, M.: A Scheme for Fast Restoration in MPLS Networks. In: Proceedings of the Twelfth IASTED International Conference on Parallel and Distributed Com-puting Systems (PDSC), pp. 488–493 (November 2000)Google Scholar
  5. 5.
    Bartos, R., Raman, M., Gandhi, A.: New Approaches to Service Restoration in MPLS-Based networks. In: Proceedings of EUROCON 2001 International Conference on Trends in Communications, pp. 58–61 (2001)Google Scholar
  6. 6.
    Capone, A., Fratta, L., Martignon, F.: Dynamic Routing of Bandwidth Guaranteed Connections in MPLS Networks. Wireless and Optical Communications 1(1), 75–86 (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Chiou, C.C., Wu, S.L.: A Fast Path Recovery Mechanism for MPLS Networks. In: Kim, C. (ed.) ICOIN 2005. LNCS, vol. 3391, pp. 58–65. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Chen, T.M., Oh, T.H.: Reliable Services in MPLS. IEEE Communications Magazine 37, 58–62 (1999)CrossRefGoogle Scholar
  9. 9.
    Fall, K., Varadhan, K.: The network simulator -ns-2. The VINT project. UC Berkeley, LBL, USC/ISI, and Xerox PARC, http://www.isi.edu/nsnam/ns/
  10. 10.
    Gonfa, L.H.: Enhanced Fast Rerouting Mechanisms for Protected Traffic in MPLS Networks. Phd Thesis, Technical University of Catalonia (February 2003)Google Scholar
  11. 11.
    Hadjiona, M., Georgiou, C., Papa, M., Vassiliou, V.: A Hybrid Fault-Tolerant Algorithm for MPLS Networks, Technical Report TR-07-06, Department of Computer Science, University of Cyprus (December 2007), http://www.cs.ucy.ac.cy/~chryssis/MPLS-TR.pdf
  12. 12.
    Haskin, D., Krishnan, R.: A Method for Setting an Alternative Label Switched Paths to Handle Fast Reroute. Internet Draft (2000)Google Scholar
  13. 13.
    Hong, D.W., Hong, C.S.: A Rerouting Scheme with Dynamic Control of Restoration Scope for Survivable MPLS Network. In: Kim, C. (ed.) ICOIN 2005. LNCS, vol. 3391, pp. 233–243. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Kodialam, M., Lakshman, T.V.: Minimum Interference Routing with Applications to MPLS Traffic Engineering. In: Proceedings of IEEE Infocom, pp. 884–893 (2000)Google Scholar
  15. 15.
    Kurose, J.F., Ross, K.W.: Computer Networking – A Top-Down Approach Featuring the Internet, 3rd edn. Addison-Wesley, Reading (2004)Google Scholar
  16. 16.
    Lin, J.W., Liu, H.Y.: An Efficient Fault-Tolerant Approach for MPLS Network Systems. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 815–824. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Makam, S., Sharma, V., Owens, K., Huang, C.: Protection/Restoration Mechanism for MPLS Networks. Internet Draft (1999)Google Scholar
  18. 18.
    Menth, M., Milbrandt, J., Reifert, A.: Self-Protecting Multipaths - A Simple and Resource-Efficient Protection Switching Mechanism for MPLS Networks. In: Proceeding of IFIP-TC6 Networking Conference (Networking), Athens, Greece, pp. 526–537 (May 2004)Google Scholar
  19. 19.
    Otel, F.D.: On Fast Computing Bypass Tunnel Routes in MPLS-Based Local Restoration. In: Proceedings of 5th IEEE International Conference on High Speed Networks and Multimedia Communications, pp. 234–238 (2002)Google Scholar
  20. 20.
    Pu, J., Manning, E., Shoja, G.C.: Reliable Routing in MPLS Networks. In: Proceedings of IASTED International Conference on Communications and Computer Networks (CCN 2002) (2002)Google Scholar
  21. 21.
    Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture. RFC 3031 (2001)Google Scholar
  22. 22.
    Sharma, V., Hellstrand, F.: Framework for Multi-Protocol Label Switching (MPLS)-based Recovery. RFC 3469 (2003)Google Scholar
  23. 23.
    Yoon, S., Lee, H., Choi, D., Kim, Y., Lee, G., Lee, M.: An Efficient Recovery Mechanism for MPLS-based Protection LSP. In: Proceedings of Joint 4th IEEE International Conference on ATM (ICATM 2001) and High Speed Intelligent Internet Symposium, pp. 75–79 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maria Hadjiona
    • 1
  • Chryssis Georgiou
    • 1
  • Maria Papa
    • 1
  • Vasos Vassiliou
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations