Advertisement

The λ-MLEM Algorithm: An Iterative Reconstruction Technique for Metal Artifact Reduction in CT Images

  • May Oehler
  • Thorsten M. Buzug
Part of the Springer Proceedings in Physics book series (SPPHY, volume 114)

Abstract

Filtered backprojection (FBP) is an inadequate method to cope with inconsistencies in Radon space and, consequently, leads to artifacts in reconstructed CT images. A solution to this problem is given by statistical reconstruction methods like the Maximum-Likelihood Expectation-Maximization (MLEM) algorithm. The advantage of MLEM is that it allows to weight raw projection data during reconstruction. The method presented here consists of two steps. In a first step, inconsistent data in the Radon space were bridged using a directional interpolation scheme. Since these surrogate data are contaminated with residual inconsistencies, in a second step, the image is reconstructed using a weighted MLEM algorithm. In this work, the modified MLEM algorithm for metal artifact reduction in CT is presented for clinical hip prosthesis data. On the basis of image entropy the reconstruction success is evaluated.

Keywords

Surrogate Data Metal Artifact Metal Object Metal Artifact Reduction Iterative Reconstruction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. De Man, J. Nuyts, P. Dupont, G. Marchal and P. Suetens, Metal Streak Artifacts in X-ray Computed Tomography: A Simulation Study, IEEE Trans. Nucl. Sci. 46, 691, 1999.CrossRefGoogle Scholar
  2. 2.
    W. A. Kalender, R. Hebel, and J. Ebersberger, Reduction of CT artifacts caused by metallic implants, Radiology 164, 576, 1987.Google Scholar
  3. 3.
    G. H. Glover and N. J. Pelc, An algorithm for the reduction of metal clip artifacts in CT reconstructions, Med. Phys. 8, 799, 1981.CrossRefGoogle Scholar
  4. 4.
    M. Bertalmio, G. Sapira, Image Inpainting, Computer Graphics SIGGRAPH2000, 417, 2000.Google Scholar
  5. 5.
    K. Lange, M. Bahn and R. Little, A Theoretical Study of Some Maximum Likelihood Algorithms for Emission and Transmission Tomography, IEEE Trans. Med. Imag. 6, 106, 1987.CrossRefGoogle Scholar
  6. 6.
    M. Oehler and T. M. Buzug, CT Artifact Reduction with an Iterative Maximum Likelihood Approach, in: S. Weber et al. (Eds.), Computer Aided Surgery around the Head, VDI Fortschritt-Bericht 17: Biotechnik/Medizintechnik 258(17), (VDI-Verlag, Düsseldorf, 2005) 44.Google Scholar
  7. 7.
    M. Oehler, L. Pfaffmann and T. M. Buzug, Artefact Suppression in Computed Tomography using Iterative Reconstruction Methods, Biomedizinische Technik 50, 1130, 2005.Google Scholar
  8. 8.
    M. Oehler and T. M. Buzug, Gewichtete MLEM-Rekonstruktion zur Artefaktreduktion in der Transmissions-Computertomographie, Proceedings of 37th Annual Meeting DGMP, Regensburg (2006) 345.Google Scholar
  9. 9.
    M. Oehler and T. M. Buzug, Maximum-Likelihood-Ansatz zur Metallartefaktreduktion bei der Computertomographie, BVM 2006 (Springer, Berlin, 2006) 36.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • May Oehler
    • 1
  • Thorsten M. Buzug
    • 2
  1. 1.Department of Mathematics and TechnologyRheinAhrCampus RemagenRemagenGermany
  2. 2.Institute of Medical EngineeringUniversity of LuebeckLuebeckGermany

Personalised recommendations