Advertisement

Registration of Intraoperative 3D Ultrasound with MR Data for the Navigated Computer Based Surgery

  • Claudia Dekomien
  • Markus Mildenstein
  • Karin Hensel
  • Stephanie Hold
  • Susanne Winter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 114)

Abstract

Computer based navigated surgery assists the spatial orientation of the surgeon. Our system registers preoperative data like CT or MR with intraoperative ultrasound data to get the coordinate transformation between the preoperative and the intraoperative data. With a surface volume registration we avoid a difficult surface segmentation in the ultrasound data. To prevent radial exposure and to get more details in the soft tissue the use of MR data for the operation planning is common. Extracting the bone surface in MR data is more difficult than in CT data because MR data has no normalized gray values. To register the ultrasound with the MR data at the knee we detected distinctive anatomic regions in the ultrasound data. We selected an adequate MR sequence in which we could segment the bone surface at the specific region. We evaluate the registration with 1000 random starting positions. 99.2% of the 1000 trails reached the optimum with an error less than 1 mm.

Keywords

Bone Structure Bone Surface Registration Result Ultrasound Data Successful Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Amin, T. Kanade, A. DiGioia, B. Jaramaz, in Ultrasound registration of bone surface for surgical navigation, Comput Aided Surg 8, 1–16, 2003.Google Scholar
  2. 2.
    J. Tonetti, L. Carrat, S. Blendea, P. Merloz, J. Troccaz, S. Lavallee, J. Chirossel, Vertebral surface extraction from ultrasound images for technology-guided therapy, Computer Aided Surgery 4, Vol. 6, 204–211, 2001.CrossRefGoogle Scholar
  3. 3.
    D. M. Muratore, B. M. Dawant, R. Ll. Galloway, Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy, Proceedings of SPIE, Vol. 3661, 1499–1510, 1999.CrossRefGoogle Scholar
  4. 4.
    B. Brendel, S. Winter, A. Rick, et al., Registration of 3D CT-and ultrasounddatasets of the spine using bone structures, Comput Aided Surg 7, 146–155, 2002.CrossRefGoogle Scholar
  5. 5.
    S. Winter, B. Brendel, A. Rick, Registration of bone surfaces, extracted from CTdatasets, with 3D-ultrasound, Biomed Tech 47, 57–60, 2002.CrossRefGoogle Scholar
  6. 6.
    B. Brendel, S. Winter, H. Ermert, et al., In vivo Evaluierung und in vitro Genauigkeitsmessung für einen Algorithmus zur Registrierung von Ultraschall-und CT Datensätzen, In: Procs BVM, 340–344, 2005.Google Scholar
  7. 7.
    S. Winter, B. Brendel, C. Igel, Registration of bone structures in 3D ultrasound and CT data: Comparison of different optimization strategies, Procs CARS, Vol. 1281, 242–247, 2005.Google Scholar
  8. 8.
    T. G. Sanders, M. D. Miller, A Systematic Approach to Magnetic Resonance Imaging Interpretation of Sports Medicine Injuries of the Knee, The American Journal of Sports Medicine, Vol. 33, No. 1, 2005Google Scholar
  9. 9.
    N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol Comput 9, Vol. 2, 159–195, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Claudia Dekomien
    • 1
  • Markus Mildenstein
    • 1
  • Karin Hensel
    • 2
  • Stephanie Hold
    • 2
  • Susanne Winter
    • 1
  1. 1.Institut für NeuroinformatikRuhr-Universität BochumBochumGermany
  2. 2.Lehrstuhl für MedizintechnikRuhr-Universität BochumBochumGermany

Personalised recommendations