Segmentation and Navigation Support of Clinical Data Sets to Simulate the Bronchoscopy and Rhinoscopy

  • Christian Dold
  • Ulrich Bockolt
  • Marcus Roth
  • Claus Peter Heussel
  • Jan Gosepath
  • Georgios Sakas
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 114)


A training and simulation system for therapy planning is developed based on patient specific imaging data. A real endoscope is used for navigation through the virtual patient. For this purpose sensors were built in the endoscope in order to track the translation, rotation and the angle of the distal end. Pre-processing (segmentation, tissue characterization) speeds-up the volume rendering up to real-time. Collision detection enables a realistic fly through the virtual patient.


Collision Detection Individual Patient Data Bronchial Tree Virtual Patient Bronchial Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Dold, U. Bockolt, G. Sakas, M. Roth. Virtuelle Analyse und Simulation im Bereich der Bronchoskopie und Rhinoskopie mit echten Patientendaten. In: 9. IFF-Wissenschaftstage 2006. (2006), pp. 163–170.Google Scholar
  2. 2.
    G. Sakas, S. Stüring. Anwendungen der Virtuellen und erweiterten Realität in der Medizin. In: Schulze, T., Schlechtweg, S.; Hinz, V. (Hrsg.): Simulation und Visualisierung 2005. Erlangen/San Diego: SCS Publishing House (2005), ISBN 3-936150-40-0, S.383–392.Google Scholar
  3. 3.
    M. Schenk, E. Blümel, M. Schumann. ViVERA — Virtuelles Kompetenznetzwerk zur virtuellen und erweiterten Realität. In: Schulze, T., Schlechtweg, S.; Hinz, V. (Hrsg.): Simulation und Visualisierung 2005. Erlangen/San Diego: SCS Publishing House (2005), ISBN 3-936150-40-0, S.377–381.Google Scholar
  4. 4.
    J.A. Sethian et. al. Level Set Methods and Fast Marching Methods. In: Cambridge Press, Chapter 16 (1999), Second edition.Google Scholar
  5. 5.
    P. Perona and J. Maik. Scale-space and edge detection using anisotropic diffusion. In: IEEE Transactions on Pattern Analysis Machine Intelligence, volume 17 (1990), pp. 586–595.Google Scholar
  6. 6.
    M. Unser. Splines: A Perfect Fit for Signal and Image Processing. In: IEEE Signal Processing Magazine, volume 16 no. 6 (1999), pp. 22–38.CrossRefGoogle Scholar
  7. 7.
    M. Ikits et al. Volume Rendering Techniques. In: GPU Gems. Addison-Wesley (2004), pp. 667–692.Google Scholar
  8. 8.
    J. Kessenich, D. Baldwin, R. Rost. The OpenGL Shading Language. In: OpenGL documentation (2006), pp 1–93.Google Scholar
  9. 9.
    L. Ibanez, W. Schroeder, L. Ng, J. Cates and the Insight Software Consortium. The ITK Software Guide. URL, 2005.Google Scholar
  10. 10.
    S. A. Hojjatoleslami and J. Kittler. RegionGrowing: A New Approach. In: IEEE Transactions On Image Processing, volume 7 (1998), pp. 1079–1084.CrossRefGoogle Scholar
  11. 11.
    A. Rosenfeld, “The fuzzy geometry of image subsets”, In: Pattern Recognition Letters 2 (1991), pp. 311–317.CrossRefGoogle Scholar
  12. 12.
    J. Udupa and S. Samarasekara. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. In: Graphical Models and Image Processing, volume 58, no.3 (1996), pp. 246–261.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Dold
    • 1
    • 4
  • Ulrich Bockolt
    • 1
  • Marcus Roth
    • 1
  • Claus Peter Heussel
    • 2
  • Jan Gosepath
    • 3
  • Georgios Sakas
    • 1
  1. 1.Cognitive Computing and Medical ImagingFraunhofer Institut für Graphische Datenverarbeitung (IGD)Darmstadt
  2. 2.Diagnostische und Interventionelle RadiologieThoraxklinik-Heidelberg gGmbHHeidelberg
  3. 3.HNO-KlinikUniversität MainzMainz
  4. 4.ComputerGraphik & WissensVisualisierungTU GrazGraz

Personalised recommendations