Skip to main content

The effects of volcanic eruptions observed in satellite images: Examples from outside the North Pacific region

  • Chapter
  • First Online:
Monitoring Volcanoes in the North Pacific

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 1236 Accesses

Abstract

The effect of a volcanic eruption by liberating magma, gases, and energy is to modify the Earth’s surface and its atmosphere. Quite how these changes are produced depends on the nature of the eruption; for example, whether it is explosive or effusive, the period of time over which the eruption occurs, the mass of material erupted, and the geographic area over which the erupted products are distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J.E.; Self, S.; Mouginis-Mark, P.J. (2001). Has dynamic equilibrium been re-established for the fluvial landscape on the 1991 Mt. Pinatubo ignimbrite sheet? EOS, Transactions American Geophysical Union, 82(47), F16–F17.

    Google Scholar 

  • Barberi, F.; Carapezza, M.L.; Valenza, M.; Villari, L. (1993). The control of lava flow during the 1991–1992 eruption of Mt. Etna, J. Volcanol. Geothermal Res., 56, 1–34.

    Google Scholar 

  • Bardintzeff, J-M.; Deniel, C. (1992). Magmatic evolution of Pacaya and Cerro Chiquito volcanolocal complex, Guatemala, Bull. Volcanol., 54, 267–283.

    Google Scholar 

  • Blong, R.J. (1984). Volcanic Hazards: A Sourcebook on the Effects of Eruptions, Academic Press, London, 424 pp.

    Google Scholar 

  • Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. (1992). Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154.

    Google Scholar 

  • Calvari, S.; Pinkerton, H. (1998). Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna, J. Geophys. Res., 103, 27291–27301.

    Google Scholar 

  • Calvari, S.; Coltelli, M.; Pompilio, M.; Scribano, V. (1994). The 1991–1993 Etna eruption: Chronology and lava flow-field evolution, Acta Vulcanologica, 4, 1–14.

    Google Scholar 

  • Campita, N.R.; Daag, A.S.; Newhall, C.G.; Rowe, G.L.; Solidum, R.U. (1996). Evolution of a small caldera lake at Mount Pinatubo, in C.G. Newhall and R.S. Punongbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp. 435–442.

    Google Scholar 

  • Carn, S.A.; Krueger, A.J.; Bluth, G.J.S.; Schaefer, S.J.; Krotkov, N.A.; Watson, I.M.; Data, S. (2003). Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulphur dioxide and ash emissions, in C. Oppenheimer, D.M. Pyle, and J. Barclay (Eds.), Volcanic Degassing, Special Publication 213, Geological Society of London pp. 177–202.

    Google Scholar 

  • Chien, S.; Davies, A.; Tran, D.; Chichy, B.; Rabideau, G.; Castaño, R.; Sherwood, R.; Jones, J.; Grosvenor, S.; Mandl, D. et al. (2004). Using automated planning for sensorweb response.

    Google Scholar 

  • Christiansen, R.L.; Peterson, D.W. (1981). Chronology of the 1980 eruptive activity, The 1980 Eruptions of Mount St. Helens, Washington, USGS Professional Paper 1250, U.S. Geological Survey, Reston, VA, pp. 17–30.

    Google Scholar 

  • Corsaro, R.A.; Cristofoini, R.; Patane, L. (1996). The 1669 eruption at Mount Etna: Chronology, petrology and geochemistry, with inferences on the magma sources and ascent mechanisms, Bull. Volcanol., 58, 348–358.

    Google Scholar 

  • Crowley, T.J.; Kim, K.-Y. (1999). Modelling the temperature response to forced climate change over the last six centuries, Geophys. Res. Lett., 26, 1901–1904.

    Google Scholar 

  • Daag, A.S.; van Westen, C.J. (1996). Cartographic modelling of erosion in pyroclastic flow deposits of Mount Pinatubo, Philippines, ITC J., 2, 110–124.

    Google Scholar 

  • Davies, A.; Chien, S.; Baker, V.; Doggett, T.; Dohm, J.; Greeley, R.; Ip, F.; Castaño, R.; Cichy, B.; Rabideau, G. et al. (2006a). Monitoring active volcanism with the Autonomous Sciencecraft Experiment on EO 1, Remote Sensing of Environment, 101, 427–446.

    Google Scholar 

  • Davies, A.G.; Chien, S.; Wright, R.; Miklius, A.; Kyle, P.R.; Welsh, M.; Johnson, J.B.; Tran, D.; Schaffer, S.R.; Sherwood, R. (2006b). Sensor web enables rapid-response to volcanic activity, EOS, Trans. Am. Geophys. Union, 87(1), 5.

    Google Scholar 

  • Denniss, A.M.; Harris, A.J.L.; Carlton, R.W.; Francis, P.W.; Rothery, D.A. (1996). The 1993 Lascar pyroclastic flow imaged by JERS-1, Int. J. Remote Sensing, 17, 1975–1980.

    Google Scholar 

  • Eggers, A.A. (1983). Temporal gravity and elevation changes at Pacaya volcano, Guatemala, J. Volcanol. Geothermal Res., 19, 223–237.

    Google Scholar 

  • Fisher, R.V.; Heiken, G.; Hulen, J.B. (1997). Volcanoes: Crucibles of Change, Princeton University Press, Princeton, NJ, 317 pp.

    Google Scholar 

  • Forsyth, P.Y. (1988). In the wake of Etna, 44 B.C., Classical Antiquity, 7, 49–57.

    Google Scholar 

  • Francis, P.W.; Wells, G.L. (1988). Landsat thematic mapper observations of debris avalanche deposits in the Central Andes, Bull. Volcanol., 50, 258–278.

    Google Scholar 

  • Guo, S.; Bluth, G.S.; Rose, W.I.; Watson, I.M.; Prata, A.J. (2004). Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors, Geochem. Geophys. Geosyst., 5, doi: 10.1029/2003GC000654.

  • Harris, A.J.L.; Butterworth, A.L.; Carlton, R.W.; Downey, I.; Miller, P.; Navarro, P.; Rothery, D.A. (1997a). Low cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus, Bull. Volcanol., 59, 49–64.

    Google Scholar 

  • Harris, A.J.L.; Blake, S.; Rothery, D.A.; Stevens, N.F. (1997b). A chronology of the 1991 to 1993 Etna eruption using AVHRR data: Implications for real time thermal volcano monitoring, J. Geophys. Res., 102, 7985–8003.

    Google Scholar 

  • Harris, A.J.L.; Murray, J.B.; Aries, S.E.; Davies, M.A.; Flynn, L.P.; Wooster, M.J.; Wright, R.; Rothery, D.A. (2000). Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms, J. Volcanol. Geothermal Res., 102, 237–269.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Rose, W.I. (2003). Temporal trends in lava dome extrusion at Santiaguito 1922–2000, Bull. Volcanol., 65, 77–89.

    Google Scholar 

  • Harris, A.J.L.; Vallance, J.W.; Kimberly, P.; Rose, W.I.; Matías, O.; Flynn, L.P.; Garbeil, H. (2004). Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala, Volcanic Hazards in Central America, GSA Special Paper, Geological Society of America, Boulder, CO.

    Google Scholar 

  • Harris, A.J.L.; Vallance, J.W.; Kimberly, P.; Rose, W.I.; Matías, O.; Bunzendahl, E.; Flynn, L.P.; Garbeil, H. (2006). Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala, in W.I. Rose (Ed.), Volcanic Hazards in Central America (GSA Special Paper 412), Geological Society of America, Boulder, CO, pp. 85–104.

    Google Scholar 

  • Heliker, C.; Mattox, T.N. (2003). The first two decades of the Pu‘u ‘Ō‘ō-K_upaianaha eruption: Chronology and selected bibliography, in C. Heliker, D.A. Swanson, and T.J. Takahashi (Eds.), The Pu‘u ‘Ō‘ō-K_upaianaha Eruption of Kīlauea Volcano, Hawai‘i: The First 20 Years, USGS Professional Paper 1676, U.S. Geological Survey, Reston, VA, pp. 1–28.

    Google Scholar 

  • Holasek, R.; Self, S.; Woods, A.W. (1996). Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes, J. Geophys. Res., 101, 27635–27655.

    Google Scholar 

  • Humphreys, W.J. (1913). Volcanic dust and other factors in the production of climatic changes, and their possible relation to ice gases, J. Franklin Institute, August, 131–172.

    Google Scholar 

  • Kerle, N.; van Wyk de Vries, B.; Oppenheimer, C. (2003). New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua, Bull. Volcanol., 65, 331–345.

    Google Scholar 

  • Keszthelyi, L.; Self, S. (1998). Some physical requirements for the emplacement of long basaltic lava flows, J. Geophys. Res., 103, 27447–27464.

    Google Scholar 

  • Kimberly, P. (1995). Changing volcaniclastic sedimentary patterns at Santa Maria volcano, Guatemala, detected with sequential Thematic Mapper data, 1987–95, Unpublished M.S. thesis, Michigan Technological University, 59 pp.

    Google Scholar 

  • Krueger, A.J. (1983). Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 Total Ozone Mapping Spectrometer, Science, 220, 1377–1379.

    Google Scholar 

  • Kuenzi, W.D.; Horst, O.H.; McGehee, R.V. (1979). Effect of volcanic activity on fluvial-deltaic sedimentation in a modern arc-trench gap, southwestern Guatemala, Geol. Society Amer. Bull., 90, 827–838.

    Google Scholar 

  • Lamb, H.H. (1970). Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance, Philosophical Trans. Royal Society London A, 266, 425–533.

    Google Scholar 

  • Major, J.J.; Janda, R.J.; Daag, A.S. (1996). Watershed disturbance and lahars on the east side of Mount Pinatubo during the mid-June 1991 eruptions, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 895–919.

    Google Scholar 

  • McCormick, M.P.; Veiga, R.E. (1992). SAGE II measurements of early Pinatubo aerosols, Geophys. Res. Lett., 19, 155–158.

    Google Scholar 

  • Mercado, R.A.; Lacsamana, J.B.T.; Pineda, G.L. (1996). Socioeconomic impacts of the Mount Pinatubo Eruption, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 1063–1070.

    Google Scholar 

  • Mitchell, J.M. (1961). Recent secular changes of the global temperature, Annals of the New York Academy of Sciences, 95, 235–250.

    Google Scholar 

  • Paladio-Melosantos, L.O.; Solidum, R.U.; Scott, W.E.; Quiambao, R.B.; Umbal, J.V.; Rodolfo, K.S.; Tubianosa, B.S.; Delos Reyes, P.J.; Alonso, R.A.; Ruelo, H.B. (1996). Tephra falls of the 1991 eruptions of Mount Pinatubo, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 513–536.

    Google Scholar 

  • Patrick, M.R.; Smellie, J.L.; Harris, A.J.L.; Wright, R.; Dean, K.; Izbekov, P.; Garbeil, H.; Pilger, E. (2005). First recorded eruption at Mount Belinda Volcano, (Montagu Island), South Sandwich Islands, Bull. Volcanol., in press.

    Google Scholar 

  • Pearlman, J.; Barry, P.; Segal, C.; Shepanski, J.; Beiso, D.; Carman, S. (2003). Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Remote Sensing, 41, 1160–1173.

    Google Scholar 

  • Pierson, T.C.; Janda, R.J.; Thouret, J-C.; Borrero, C.A. (1990). Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars, J. Volcanol. Geothermal Res., 41, 17–66.

    Google Scholar 

  • Pierson, T.C.; Daag, A.S.; Delos Reyes, P.J.; Regalado, M.T.M.; Solidum, R.U.; Tubianosa, B.S. (1996). Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo, July–October 1991, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 921–950.

    Google Scholar 

  • Punongbayan, R.S.; Newhall, C.G.; Hoblitt, R.P. (1996). Photographic record of rapid geomorphic change at Mount Pinatubo, 1991–94, in C.G. Newhall and R.S. Punongbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp. 21–66.

    Google Scholar 

  • Robock, A. (1981). The Mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effect, Science, 212, 1383–1384.

    Google Scholar 

  • Robock, A. (2000). Volcanic eruptions and climate, Reviews of Geophysics, 38, 191–219.

    Google Scholar 

  • Robock, A. (2002). The climatic aftermath, Science, 295(5558), 1242–1244.

    Google Scholar 

  • Robock, A.; Mao, J. (1995). Winter warming from large volcanic eruptions, Geophys. Res. Lett., 19, 2405–2408.

    Google Scholar 

  • Rose, W.I. (1987). Volcanic Activity at Santiaguito Volcano, 1976–1984, GSA Special Paper 212, Geological Society of America, Boulder, CO, pp. 17–27.

    Google Scholar 

  • Rymer, H.; van Wyk de Vries, B.; Stix, J.; Williams-Jones, G. (1998). Pit crater structure and processes governing persistent activity at Masaya volcano, Nicaragua, Bull. Volcanol., 59, 345–355.

    Google Scholar 

  • Rymer, H.; Cassidy, J.; Locke, C.A.; Barboza, M.V.; Barquero, J.; Brenes, J.; Van der Laat, R. (2000). Geophysical studies of the recent 15-year eruptive cycle at Poás Volcano, Costa Rica, J. Volcanol. Geothermal Res., 97, 425–442.

    Google Scholar 

  • Schoeberl, M.R.; Bhartia, P.K.; Hilsenrath, E.; Torres, O. (1993). Tropical ozone loss following the eruption of Mt. Pinatubo, Geophys. Res. Lett., 20, 29–32.

    Google Scholar 

  • Scott, K.M.; Macías, J.L.; Naranjo, J.A.; Rodríguez, S.; McGeehin, J.P. (2001). Catastrophic Debris Flows Transformed from Landslides in Volcanic Terrains: Mobility, Hazard Assessment, and Mitigation Strategies (USGS Professional Paper 1630), U.S. Geological Survey, Reston, VA

    Google Scholar 

  • Scott, W.E.; Hoblitt, R.P.; Torres, R.C.; Self, S.; Mylene, Ma.; Martinez, L.; Nillos Jr., T. (1996). Pyroclastic flows of the June 15, 1991 climactic eruption of Mount Pinatubo, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 545–570.

    Google Scholar 

  • Self, S.; Zhao, J.; Holasek, R.E.; Torres, R.C.; King, A.J. (1996). The atmospheric impact of the 1991 Mount Pinatubo eruption, in C.G. Newhall and R.S. Punongbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 1089–1115.

    Google Scholar 

  • Self, S.; Gertisser, R.; Thordarson, T.; Rampino, M.R.; Wolff, J.A. (2004). Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora, Geophys. Res. Lett., 31, L20608, doi: 10.1029/2004GL020925.

  • Stothers, R.B. (1984). The great Tambora eruption of 1815 and its aftermath, Science, 224, 1191–1198.

    Google Scholar 

  • Torres, R.C.; Self, S.; Martinez, M.L. (1996). Secondary pyroclastic flows from the June 15, 1991, ignimbrite of Mount Pinatubo, in C.G. Newhall and R.S. Punongbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp. 665–678.

    Google Scholar 

  • Torres. R.C.; Mouginis-Mark, P.J.; Self, S.; Garbeil, H.; Kallianpur, K.; Quiambao, R. (2004). Monitoring the evolution of the Pasig–Potrero alluvial fan, Pinatubo volcano, using a decade of remote sensing data, J. Volcanol. Geothermal Res., 138, 371–392.

    Google Scholar 

  • Umbal, J.V.; Rodolfo, K.S. (1996). The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe Lake, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 951–970

    Google Scholar 

  • Wadge, G. (2003). A strategy for the observation of volcanism on Earth from space, Philosophical Trans. Royal Society London A, 361, 145–156.

    Google Scholar 

  • Wadge, G.; Francis, P.W.; Ramirez, C.F. (1995). The Socompa collapse and avalanche event, J. Volcanol. Geothermal Res., 66, 309–336.

    Google Scholar 

  • Wen, S.; Rose, W.I. (1994). Retrieval of the size and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, J. Geophys. Res., 99, 5421–5431.

    Google Scholar 

  • Williams, S.N. (1983). Plinian air-fall deposits of basaltic composition, Geology, 11, 211–214.

    Google Scholar 

  • Williams, S.N.; Self, S. (1983). The October 1902 Plinian eruption of Santa Maria Volcano, Guatemala, J. Volcanol. Geothermal Res., 16, 33–56.

    Google Scholar 

  • Williams-Jones, G.; Rymer, H. (2000). The hazards of volcanic gases, in H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, and J. Stix (Eds.), Encyclopedia of Volcanoes, Academic Press, San Diego, pp. 97–1004.

    Google Scholar 

  • Williams-Jones, G.; Rymer, H.; Rothery, D.A. (2003). Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua, J. Volcanol. Geothermal Res., 123, 137–160.

    Google Scholar 

  • Wolfe, E.W.; Hoblitt, R.P. (1996). Overview of the eruptions, in C.G. Newhall and R.S. Punungbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, WA, pp. 3–20.

    Google Scholar 

  • Wright, R.; Flynn, L.P. (2004). Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002, Geology, 32, 189–192.

    Google Scholar 

  • Wright, R.; Rothery, D.A.; Blake, S.; Pieri, D.C. (2000). Visualising active volcanism with high spatial resolution satellite data: The 1991–1993 eruption of Mount Etna, Bull. Volcanol., 62, 256–265.

    Google Scholar 

  • Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. (2002). Automated volcanic eruption detection using MODIS, Remote Sensing of Environment, 82, 135–155.

    Google Scholar 

  • Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. (2004). MODVOLC: Near-real-time thermal monitoring of global volcanism, J. Volcanol. Geothermal Res., 135, 29–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wright .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, R., Harris, A.J.L., Torres, R., Flynn, L.P. (2015). The effects of volcanic eruptions observed in satellite images: Examples from outside the North Pacific region. In: Monitoring Volcanoes in the North Pacific. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68750-4_11

Download citation

Publish with us

Policies and ethics