Skip to main content

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5062)

Abstract

This paper presents an algorithm for the synthesis of bounded Petri nets from transition systems. A bounded Petri net is always provided in case it exists. Otherwise, the events are split into several transitions to guarantee the synthesis of a Petri net with bisimilar behavior. The algorithm uses symbolic representations of multisets of states to efficiently generate all the minimal regions. The algorithm has been implemented in a tool. Experimental results show a significant net reduction when compared with approaches for the synthesis of safe Petri nets.

Keywords

  • Boolean Function
  • Transition System
  • Symbolic Representation
  • Concurrent System
  • Minimal Region

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Work of J. Carmona and J. Cortadella has been supported by the project FORMALISM (TIN2007-66523), and a grant by Intel Corporation. Work of A. Yakovlev was supported by EPSRC, Grants EP/D053064/1 and EP/E044662/1.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–383. Springer, Heidelberg (1995)

    Google Scholar 

  2. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

    Google Scholar 

  3. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computer-Aided Design 35(8), 677–691 (1986)

    MATH  Google Scholar 

  5. Caillaud, B.: Synet: A synthesizer of distributable bounded Petri-nets from finite automata (2002), http://www.irisa.fr/s4/tools/synet/

  6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (2000)

    Google Scholar 

  7. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)

    CrossRef  MathSciNet  Google Scholar 

  8. Darondeau, P.: Synthesis and control of asynchronous and distributed systems. In: Basten, T., Juhás, G., Shukla, S.K. (eds.) ACSD. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  9. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Informatica 33(4), 297–315 (1996)

    CrossRef  MathSciNet  Google Scholar 

  10. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Informatica 27, 315–368 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A trace semantics for petri nets. Inf. Comput. 117(1), 98–114 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics for general petri nets. Theor. Comput. Sci. 153(1&2), 129–170 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

    Google Scholar 

  14. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  15. Mukund, M.: Petri nets and step transition systems. Int. Journal of Foundations of Computer Science 3(4), 443–478 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Sokolov, D., Bystrov, A., Yakovlev, A.: Direct mapping of low-latency asynchronous controllers from STGs. IEEE Transactions on Computer-Aided Design 26(6), 993–1009 (2007)

    CrossRef  Google Scholar 

  17. Verbeek, H.M.W., Pretorius, A.J., van der Aalst, W.M.P., van Wijk, J.J.: On Petri-net synthesis and attribute-based visualization. In: Proc. Workshop on Petri Nets and Software Engineering (PNSE 2007), pp. 127–141 (June 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A. (2008). A Symbolic Algorithm for the Synthesis of Bounded Petri Nets. In: van Hee, K.M., Valk, R. (eds) Applications and Theory of Petri Nets. PETRI NETS 2008. Lecture Notes in Computer Science, vol 5062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68746-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68746-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68745-0

  • Online ISBN: 978-3-540-68746-7

  • eBook Packages: Computer ScienceComputer Science (R0)