Skip to main content

The Chloroplast Protein Import Apparatus, Its Components, and Their Roles

  • Chapter

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 13))

Abstract

According to the endosymbiont theory, an early eukaryotic cell engulfed the ancestor of present-day chloroplasts — a relative of extant cyanobacteria. This was the start of a new era for the chloroplast progenitor, because it was placed under the control of the host cell. Many of the genes found originally in the cyanobacterial genome are today present in the cell nucleus. Thus, over time, the chloroplast has learned to live with less and less “home-made” proteins. Nevertheless, the chloroplast retains many of the functions found in cyanobacteria (e.g., photosynthesis, fatty acid and amino acid production). To maintain these functions, many proteins have to be transported “back” to the chloroplast. An import machinery drives this transport process, and this consists of translocons located in the outer and the inner envelope membranes, called TOC and TIC (Translocon of the Outer/Inner envelope membrane of Chloroplasts). This chapter focuses on these translocons, and summarizes how they mediate import of nucleus-encoded proteins into the chloroplast from the surrounding cytoplasm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas-Terki T, Briand PA, Donzé O, Picard D (2001) The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically. Biol Chem 383:1335–1342

    Google Scholar 

  • Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    PubMed  CAS  Google Scholar 

  • Akita M, Nielsen E, Keegstra K (1997) Identification of protein transport complexes in the chlo-roplastic envelope membranes via chemical cross-linking. J Cell Biol 136:983–994

    PubMed  CAS  Google Scholar 

  • Andersson MX, Goksör M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174

    PubMed  CAS  Google Scholar 

  • Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chlo-roplasts. FEBS Lett 529:215–220

    PubMed  CAS  Google Scholar 

  • Aronsson H, Sohrt K, Soll J (2000) NADPH:protochlorophyllide oxidoreductase uses the general import pathway. Biol Chem 381:1263–1267

    PubMed  CAS  Google Scholar 

  • Aronsson H, Sundqvist C, Timko MP, Dahlin C (2001) Characterisation of the assembly pathway of the pea NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR), with emphasis on the role of its substrate, Pchlide. Physiol Plant 111:239–244

    CAS  Google Scholar 

  • Aronsson H, Combe J, Jarvis P (2003a) Unusual nucleotide-binding properties of the chloroplast protein import receptor, Toc33. FEBS Lett 544:79–85

    CAS  Google Scholar 

  • Aronsson H, Sundvist C, Dahlin C (2003b) POR — import and membrane association of a key element in chloroplast development. Physiol Plant 118:1–9

    CAS  Google Scholar 

  • Aronsson H, Combe J, Patel R, Jarvis P (2006) In vivo assessment of the significance of phospho-rylation of the Arabidopsis chloroplast protein import receptor, atToc33. FEBS Lett 580:649–655

    PubMed  CAS  Google Scholar 

  • Aronsson H, Boij P, Patel R, Wardle A, Töpel M, Jarvis P (2007) Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts inArabidopsis thaliana. Plant J 52:53–68

    PubMed  CAS  Google Scholar 

  • Aronsson H, Schüttler MA, Kelly AA, Sundqvist C, Dörmann P, Karim S, Jarvis P (2008) Monogalactosyldiacylglycerol deficiency inArabidopsis thalianaaffects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol, 148:580–592

    PubMed  CAS  Google Scholar 

  • Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869

    PubMed  CAS  Google Scholar 

  • Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I (2008) AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10:220–227

    PubMed  CAS  Google Scholar 

  • Baldwin A, Wardle A, Patel R, Dudley P, Park SK, Twell D, Inoue K, Jarvis P (2005) A molecular-genetic study of the Arabidopsis Toc75 gene family. Plant Physiol 138:1–19

    Google Scholar 

  • Balsera M, Stengel A, Soll J, Bölter B (2007) Tic62: a protein family from metabolism to protein translocation. BMC Evol Biol 7:43.

    PubMed  Google Scholar 

  • Bange G, Wild K, Sinning I (2007) Protein translocation: checkpoint role for SRP GTPase activation. Curr Biol 17:R980–982

    PubMed  CAS  Google Scholar 

  • Bauer J, Chen KH, Hiltbunner A, Wehrli E, Eugster M, Schnell DJ, Kessler F (2000) The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–207

    PubMed  CAS  Google Scholar 

  • Becker T, Hritz J, Vogel M, Caliebe A, Bukau B, Soll J, Schleiff E (2004b) Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol Biol Cell 15:5130–5144

    CAS  Google Scholar 

  • Becker T, Jelic M, Vojta A, Radunz A, Soll J, Schleiff E (2004a) Preprotein recognition by the Toc complex. EMBO J 23:520–530

    CAS  Google Scholar 

  • Bédard J, Jarvis P (2005) Recognition and envelope translocation of chloroplast preproteins. J. Exp Bot 56:2287–2320

    PubMed  Google Scholar 

  • Bédard J, Jarvis P (2008) Green light for chloroplast outer-membrane proteins. Nat Cell Biol 10:120–122

    PubMed  Google Scholar 

  • Bédard J, Kubis S, Bimanadham S, Jarvis P (2007) Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J Biol Chem 282:21404–21414

    PubMed  Google Scholar 

  • Bhushan S, Johnson KA, Eneqvist T, Glaser E (2006) Proteolytic mechanism of a novel mitochon-drial and chloroplastic PreP peptidasome. Biol Chem 387:1087–1090

    PubMed  CAS  Google Scholar 

  • Bölter B, May T, Soll J (1998a) A protein import receptor in pea chloroplasts, Toc86, is only a proteolytic fragment of a larger polypeptide. FEBS Lett 441:59–62

    Google Scholar 

  • Bölter B, Soll J, Schulz A, Hinnah S, Wagner R (1998b) Origin of a chloroplast protein importer. Proc Natl Acad Sci USA 95:15831–15836

    Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877; erratum Cell 130:385

    PubMed  CAS  Google Scholar 

  • Bruce BD (1998) The role of lipids in plastid protein transport. Plant Mol Biol 38:223–246

    PubMed  CAS  Google Scholar 

  • Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–447

    PubMed  CAS  Google Scholar 

  • Caliebe A, Grimm R, Kaiser G, Lübeck J, Soll J, Heins L (1997) The chloroplastic protein import machinery contains a Rieske-type iron–sulfur cluster and a mononuclear iron-binding protein. EMBO J 16:7342–7350

    PubMed  CAS  Google Scholar 

  • Chen K, Chen X, Schnell DJ (2000) Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts. Plant Physiol 122:813–822

    PubMed  CAS  Google Scholar 

  • Chen L-J, Li H-M (1998) A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant J 16:33–39

    PubMed  Google Scholar 

  • Chen MH, Huang LF, Li HM, Chen YR, Yu SM (2004) Signal peptide-dependent targeting of a rice alpha-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol 135:1367–1377

    PubMed  CAS  Google Scholar 

  • Chen X, Smith MD, Fitzpatrick L, Schnell DJ (2002) In vivo analysis of the role of atTic20 in protein import into chloroplasts. Plant Cell 14:641–654

    PubMed  CAS  Google Scholar 

  • Chew O, Lister R, Qbadou S, Haezlewood JL, Soll J, Schleiff E, Millar AH, Whelan J (2004) A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chlo-roplast protein import receptor. FEBS Lett 557:109–114

    PubMed  CAS  Google Scholar 

  • Chigri F, Soll J, Vothknecht UC (2005) Calcium regulation of chloroplast protein import. Plant J 42:821–831

    PubMed  CAS  Google Scholar 

  • Chigri F, Hörmann F, Stamp A, Stammers DK, Bölter B, Soll J, Vothknecht UC (2006) Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci USA 103:16051–16056

    PubMed  CAS  Google Scholar 

  • Chou ML, Fitzpatrick LM, Tu SL, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li HM (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22:2970–2980

    PubMed  CAS  Google Scholar 

  • Chou ML, Chu CC, Chen LJ, Akita M, Li HM (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175:893–900

    PubMed  CAS  Google Scholar 

  • Chupin V, van't Hof R, de Kruijff B (1994) The transit sequence of a chloroplast precursor protein reorients the lipids in monogalactosyl diglyceride containing bilayers. FEBS Lett 350:104–108

    PubMed  CAS  Google Scholar 

  • Clark SA, Theg SM (1997) A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell 8:923–934

    PubMed  CAS  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci USA 78:3595–3599

    PubMed  CAS  Google Scholar 

  • Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004a) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136:3605–3615

    CAS  Google Scholar 

  • Constan D, Patel R, Keegstra K, Jarvis P (2004b) An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J 38:93–106

    CAS  Google Scholar 

  • Crotty WJ, Ledbetter MC (1973) Membrane continuities involving chloroplasts and other organelles in plant cells. Science 182:839–841

    PubMed  Google Scholar 

  • Dabney-Smith C, van den Wijngaard PWJ, Treece Y, Vredenberg WJ, Bruce BD (1999) The C-terminus of a chloroplast precursor modulates its interaction with the translocation apparatus and PIRAC. J Biol Chem 274:32351–32359

    PubMed  CAS  Google Scholar 

  • Dahlin C, Cline K (1991) Developmental regulation of the plastid protein import apparatus. Plant Cell 3:1131–1140

    PubMed  CAS  Google Scholar 

  • Dahlin C, Aronsson H, Almkvist J, Sundqvist C (2000) Pchlide independent import of two NADPH:protochlorophyllide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109:298–303

    CAS  Google Scholar 

  • Davila-Aponte JA, Inoue K, Keegstra K (2003) Two chloroplastic protein translocation components, Tic110 and Toc75, are conserved in different plastid types from multiple plant species. Plant Mol Biol 51:175–181

    PubMed  CAS  Google Scholar 

  • Dörmann P, Hoffman-Benning S, Balbo I, Benning C (1995) Isolation of anArabidopsismutant deficient in the thylakoid lipid digalactosyldiacylglycerol. Plant Cell 7:1801–1810

    PubMed  Google Scholar 

  • Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216

    PubMed  CAS  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19:986–1006

    PubMed  CAS  Google Scholar 

  • Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L, Soll J (2002) A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 3:557–562

    PubMed  CAS  Google Scholar 

  • Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    PubMed  CAS  Google Scholar 

  • Frydman J, Höhfeld J (1997) Chaperones get in touch:the Hip-Hop connection. Trends Biochem Sci 22:87–92

    PubMed  CAS  Google Scholar 

  • Fulgosi H, Soll J (2002) The chloroplast protein import receptors Toc34 and Toc159 are phospho-rylated by distinct protein kinases. J Biol Chem 277:8934–8940

    PubMed  CAS  Google Scholar 

  • Gaikwad A, Tewari KK, Kumar D, Chen W, Mukherjee SK (1999) Isolation and characterisation of the cDNA encoding a glycosylated accessory protein of pea chloroplast DNA polymerase. Nucleic Acids Res 27:3120–3129

    PubMed  CAS  Google Scholar 

  • Gentle IE, Burri L, Lithgow T (2005) Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58:1216–1225

    PubMed  CAS  Google Scholar 

  • Guera A, America T, van Waas M, Weisbeek PJ (1993) A strong protein unfolding activity is associated with the binding of precursor chloroplast proteins to chloroplast envelopes. Plant Mol Biol 23:309–324

    PubMed  CAS  Google Scholar 

  • Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R (2006) OEP37 is a new member of the chlo-roplast outer membrane ion channels. J Biol Chem 281:17989–17998

    PubMed  CAS  Google Scholar 

  • Heins L, Mehrle A, Hemmler R, Wagner R, Küchler M, Hörmann F, Sveshnikov D, Soll J (2002) The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J 21:2616–2625

    PubMed  CAS  Google Scholar 

  • Hernández Torres J, Maldonado MA, Chomilier J (2007) Tandem duplications of a degenerated GTP-binding domain at the origin of GTPase receptors Toc159 and thylakoidal SRP. Biochem Biophys Res Commun 364:325–331

    PubMed  Google Scholar 

  • Hiltbrunner A, Bauer J, Alvarez-Huerta M, Kessler F (2001a) Protein translocon at theArabidopsisouter chloroplast membrane. Biochem Cell Biol 79:629–635

    CAS  Google Scholar 

  • Hiltbrunner A, Bauer J, Vidi P-A, Infanger S, Weibel P, Hohwy M, Kessler F (2001b) Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J Cell Biol 154:309–316

    CAS  Google Scholar 

  • Hiltbrunner A, Grünig K, Alvarez-Huerta M, Infanger S, Bauer J, Kessler F (2004) AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery. Plant Mol Biol 54:427–440

    PubMed  CAS  Google Scholar 

  • Hinnah SC, Hill K, Wagner R, Schlicher T, Soll J (1997) Reconstitution of a chloroplast protein import channel. EMBO J 16:7351–60

    PubMed  CAS  Google Scholar 

  • Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J (2002) The chloroplast protein import channel Toc75:pore properties and interaction with transit peptides. Biophys J 83:899–911

    PubMed  CAS  Google Scholar 

  • Hirohashi T, Hase T, Nakai M (2001) Maize non-photosynthetic ferredoxin precursor is mis- sorted to the intermembrane space of chloroplasts in the presence of light. Plant Physiol 125:2154–2163

    PubMed  CAS  Google Scholar 

  • Hirsch S, Muckel E, Heemeyer F, von Heijne G, Soll J (1994) A receptor component of the chlo-roplast protein translocation machinery. Science 266:1989–1992

    PubMed  CAS  Google Scholar 

  • Hofmann NR, Theg SM (2005a) Chloroplast outer membrane protein targeting and insertion. Trends Plant Sci 10:450–457

    CAS  Google Scholar 

  • Hofmann NR, Theg SM (2005b) Toc64 is not required for import of proteins into chloroplasts in the mossPhyscomitrella patens. Plant J 43:675–687

    CAS  Google Scholar 

  • Hofmann NR, Theg SM (2005c) Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins. Plant J 44:917–927

    CAS  Google Scholar 

  • Hörmann F, Küchler M, Sveshnikov D, Oppermann U, Li Y, Soll J (2004) Tic32, an essential component in chloroplast biogenesis. J Biol Chem 279:34756–34762

    PubMed  Google Scholar 

  • Hust B, Gutensohn M (2006) Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development inArabidopsis thaliana. Plant Biol 8:18–30

    PubMed  CAS  Google Scholar 

  • Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell DJ (2003) atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem 278:38617–38627

    PubMed  CAS  Google Scholar 

  • Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell DJ (2005) Arabidopsis tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17:1482–1496

    PubMed  CAS  Google Scholar 

  • Inoue K (2007) The chloroplast outer envelope membrane:the edge of light and excitement. J Integr Plant Biol 49:1100–1111

    Google Scholar 

  • Inoue K, Keegstra K (2003) A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J 34:661–669

    PubMed  CAS  Google Scholar 

  • Inoue K, Potter D (2004) The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. Plant J 39:354–65

    PubMed  CAS  Google Scholar 

  • Inoue K, Demel R, de Kruijff B, Keegstra K (2001) The N-terminal portion of the preToc75 transit peptide interacts with membrane lipids and inhibits binding and import of precursor proteins into isolated chloroplasts. Eur J Biochem 268:4036–4043

    PubMed  CAS  Google Scholar 

  • Ivanova Y, Smith MD, Chen K, Schnell DJ (2004) Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell 15:3379–3392

    PubMed  CAS  Google Scholar 

  • Jackson DT, Froehlich JE, Keegstra K (1998) The hydrophilic domain of Tic110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J Biol Chem 273:16583–16588

    PubMed  CAS  Google Scholar 

  • Jackson-Constan D, Keegstra K (2001) Arabidopsis genes encoding components of the chloro-plastic protein import apparatus. Plant Physiol 125:1567–1576

    PubMed  CAS  Google Scholar 

  • Jackson-Constan D, Akita M, Keegstra K (2001) Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta 1541:102–113

    PubMed  CAS  Google Scholar 

  • Jarvis P (2008) The targeting of nucleus-encoded proteins to chloroplasts in plants (Tansley Review). New Phytol 179:257–285

    CAS  Google Scholar 

  • Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J (1998) AnArabidopsismutant defective in the plastid general protein import apparatus. Science 282:100–103

    PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the ArabidopsisMGD synthase 1mutant. Proc Natl Acad Sci USA 97:8175–8179

    PubMed  CAS  Google Scholar 

  • Jelic M, Sveshnikova N, Motzkus M, Hörth P, Soll J, Schleiff E (2002) The chloroplast import receptor Toc34 functions as preprotein-regulated GTPase. Biol Chem 383:1875–1883

    PubMed  CAS  Google Scholar 

  • Jelic M, Soll J, Schleiff E (2003) Two Toc34 homologues with different properties. Biochemistry 42:5906–5916

    PubMed  CAS  Google Scholar 

  • Kalanon M, McFadden GI (2008) The chloroplast protein translocation complexes ofChlamydomonas reinhardtii:a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179:95–112

    PubMed  CAS  Google Scholar 

  • Kessler F, Blobel G (1996) Interaction of the protein import and folding machineries in the chlo- roplast. Proc Natl Acad Sci USA 93:7684–7689

    PubMed  CAS  Google Scholar 

  • Kessler F, Schnell DJ (2002) A GTPase gate for protein import into chloroplasts. Nat Struct Biol 9:81–83

    PubMed  CAS  Google Scholar 

  • Kessler F, Schnell DJ (2004) Chloroplast protein import:solve the GTPase riddle for entry. Trends Cell Biol 14:334–338

    PubMed  CAS  Google Scholar 

  • Kessler F, Schnell DJ (2006) The function and diversity of plastid protein import pathways:a multilane GTPase highway into plastids. Traffic 7:248–257

    PubMed  CAS  Google Scholar 

  • Kessler F, Blobel G, Patel HA, Schnell DJ (1994) Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266:1035–1039

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Hirohashi T, Nakai M (2006) Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol 47:363–371

    PubMed  CAS  Google Scholar 

  • Kim C, Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16:88–98

    PubMed  CAS  Google Scholar 

  • Kim C, Ham H, Apel K (2005) Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of Arabidopsis seedlings. Plant J 42:329–340

    PubMed  CAS  Google Scholar 

  • Ko K, Budd D, Wu C, Seibert F, Kourtz L, Ko ZW (1995) Isolation and characterization of a cDNA clone encoding a member of the Com44/Cim44 envelope components of the chloroplast protein import apparatus. J Biol Chem 270:28601–28608

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipd synthesis in chlo- roplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    PubMed  CAS  Google Scholar 

  • Kouranov A, Schnell DJ (1997) Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. J Cell Biol 139:1677–1685

    PubMed  CAS  Google Scholar 

  • Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143:991–1002

    PubMed  CAS  Google Scholar 

  • Kouranov A, Wang H, Schnell DJ (1999) Tic22 is targeted to the intermembrane space of chloro-plasts by a novel pathway. J Biol Chem 274:25181–25186

    PubMed  CAS  Google Scholar 

  • Kovacheva S, Bédard J, Patel R, Dudley P, Twell D, Ríos G, Koncz C, Jarvis P (2005) In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41:412–428

    PubMed  CAS  Google Scholar 

  • Kovacheva S, Bédard J, Wardle A, Patel R, Jarvis P (2007) Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50:364–379

    PubMed  CAS  Google Scholar 

  • Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K, Kurth J, Leister D, Jarvis P (2003) The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 15:1859–1871

    PubMed  CAS  Google Scholar 

  • Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, Jarvis P (2004) Functional specialization amongst the Arabidopsis Toc159 family of chlo-roplast protein import receptors. Plant Cell 16:2059–2077

    PubMed  CAS  Google Scholar 

  • Küchler M, Decker S, Hörmann F, Soll J, Heins L (2002) Protein import into chloroplasts involves redox-regulated proteins. EMBO J 21:6136–6145

    PubMed  Google Scholar 

  • Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175–2190

    PubMed  CAS  Google Scholar 

  • Lee KH, Kim SJ, Lee YJ, Jin JB, Hwang I (2003) The M domain of atToc159 plays an essential role in the import of proteins into chloroplasts and chloroplast biogenesis. J Biol Chem 278:36794–36805

    PubMed  CAS  Google Scholar 

  • Lee YJ , Sohn EJ , Lee KH , Lee DW , Hwang I (2004) The transmembrane domain of AtToc64 and its C-terminal lysine-rich flanking region are targeting signals to the chloroplast outer envelope membrane. Mol Cells 17:281–291

    PubMed  CAS  Google Scholar 

  • Li H-M, Schnell DJ (2006) Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol 175:249–259

    PubMed  CAS  Google Scholar 

  • Li H-M, Kesavulu MM, Su P-H, Yeh Y-H, Hsiao C-D (2007) Toc GTPases. J Biomed Sci 14:505–508

    PubMed  CAS  Google Scholar 

  • Lübeck J, Soll J, Akita M, Nielsen E, Keegstra K (1996) Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J 15:4230–4238

    PubMed  Google Scholar 

  • Lynch M, Blanchard JL (1998) Deleterious mutation accumulation in organelle genomes. Genetica 102–103:29–39

    PubMed  Google Scholar 

  • Ma Y, Kouranov A, LaSala SE, Schnell DJ (1996) Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J Cell Biol 134:315–327

    PubMed  CAS  Google Scholar 

  • Marshall JS, DeRocher AE, Keegstra K, Vierling E (1990) Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci USA 87:374–378

    PubMed  CAS  Google Scholar 

  • Martin W, Herrman RG (1998) Gene transfer from organelles to the nucleus:how much, what happens, and why?. Plant Physiol 118:9–17

    PubMed  CAS  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxy-genases. Annu Rev Microbiol 46:277–305

    PubMed  CAS  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–63

    PubMed  CAS  Google Scholar 

  • Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492

    PubMed  CAS  Google Scholar 

  • Moberg P, Ståhl A, Bhushan S, Wright SJ, Eriksson A, Bruce BD, Glaser E (2003) Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. Plant J 36:616–628

    PubMed  CAS  Google Scholar 

  • Nada A, Soll J (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117:3975–3982

    PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    PubMed  CAS  Google Scholar 

  • Nakrieko K-A, Mould RM, Smith AG (2004) Fidelity of targeting to chloroplasts is not affected by removal of the phosphorylation site from the transit peptide. Eur J Biochem 271:509–516

    PubMed  CAS  Google Scholar 

  • Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, Muñoz FJ, Rodríguez-López M, Baroja-Fernández E, Pozueta-Romero J (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–25892

    PubMed  CAS  Google Scholar 

  • Nassoury N, Morse D (2005) Protein targeting to the chloroplasts of photosynthetic eukaryotes:getting there is half the fun. Biochim Biophys Acta 1743:5–19

    PubMed  CAS  Google Scholar 

  • Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Biol Cell 3:555–565

    CAS  Google Scholar 

  • Nielsen E, Akita M, Davila-Aponte J, Keegstra K (1997) Stable association of chloroplastic precursors with protein-translocation complexes that contain proteins from both envelope membranes and a stromal Hsp1000 molecular chaperone. EMBO J 16:935–946

    PubMed  CAS  Google Scholar 

  • Olsen LJ, Keegstra K (1992) The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space. J Biol Chem 267:433–439

    PubMed  CAS  Google Scholar 

  • Olsen LJ, Theg SM, Selman BR, Keegstra K (1989) ATP is required for the binding of precursor proteins to chloroplasts. J Biol Chem 264:6724–6729

    PubMed  CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117

    PubMed  CAS  Google Scholar 

  • Oreb M, Zoryan M, Vojta A, Maier UG, Eichacker LA, Schleiff E (2007) Phospho-mimicry mutant of atToc33 affects early development ofArabidopsis thaliana. FEBS Lett 581:5945–5951

    PubMed  CAS  Google Scholar 

  • Pain D, Blobel G (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc Natl Acad Sci USA 84:3288–3292

    PubMed  CAS  Google Scholar 

  • Park S, Rodermel SR (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci USA 101:12765–12770

    PubMed  CAS  Google Scholar 

  • Perry SE, Keegstra K (1994) Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell 6:93–105

    PubMed  CAS  Google Scholar 

  • Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J (2007) Chloroplast biogenesis:the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci USA 104:678–683

    PubMed  CAS  Google Scholar 

  • Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, van't Hof R, de Korte-Kool G, Demel R, Weisbeek P, de Kruijff B (1995) Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 270:3882–3893

    PubMed  CAS  Google Scholar 

  • Pinnaduwage P, Bruce B (1996) In vitro interaction between a chloroplast transit peptide and chloroplast outer envelope lipids is sequence-specific and lipid class-dependent. J Biol Chem 271:32907–32915

    PubMed  CAS  Google Scholar 

  • Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler EW (2006) Subcellular localization and tissue specific expression of amidase 1 fromArabidopsis thaliana. Planta 224:1241–1253

    PubMed  CAS  Google Scholar 

  • Qbadou S, Becker T, Mirus O, Tews I, Soll J, Schleiff E (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25:1836–1847

    PubMed  CAS  Google Scholar 

  • Qbadou S, Becker T, Bionda T, Reger K, Ruprecht M, Soll J, Schleiff E (2007) Toc64–a prepro-tein-receptor at the outer membrane with bipartide function. J Mol Biol 367:1330–1346

    PubMed  CAS  Google Scholar 

  • Rassow J, Dekker PJ, van Wilpe S, Meijer M, Soll J (1999) The preprotein translocase of the mitochondrial inner membrane:function and evolution. J Mol Biol 286:105–120

    PubMed  CAS  Google Scholar 

  • Reddick LE, Vaughn MD, Wright SJ, Campbell IM, Bruce BD (2007) In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J Biol Chem 282:11410–11426

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K (1995) Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7:161–172

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Lebedev N, Apel K, Reinbothe S (1997) Regulation of chloroplast protein import through a protochlorophyllide-responsive transit peptide. Proc Natl Acad Sci USA 94:8890–8894

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Quigley F, Springer A, Schemenewitz A, Reinbothe C (2004) The outer plastid envelope protein Oep16:role as precursor translocase in import of protochlorophyllide oxi-doreductase A. Proc Natl Acad Sci USA 101:2203–2208

    PubMed  CAS  Google Scholar 

  • Rensink WA, Pilon M, Weisbeek PJ (1998) Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts. Plant Physiol 118:691–699

    PubMed  CAS  Google Scholar 

  • Reumann S, Keegstra K (1999) The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Trends Plant Sci 4:302–307

    PubMed  Google Scholar 

  • Reumann S, Davila-Aponte J, Keegstra K (1999) The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes:identification of a cyanobacterial homolog. Proc Natl Acad Sci USA 96:784–789

    PubMed  CAS  Google Scholar 

  • Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway. Mol Membr Biol 22:73–86

    PubMed  CAS  Google Scholar 

  • Richter S, Lamppa GK (1999) Stromal processing peptidase binds transit peptides and initiates their ATP-dependent turnover in chloroplasts. J Biol Chem 147:33–43

    CAS  Google Scholar 

  • Richter S, Lamppa GK (2003) Structural properties of the chloroplast stromal processing pepti-dase required for its function in transit peptide removal. J Biol Chem 278:39497–39502

    PubMed  CAS  Google Scholar 

  • Roth RA (2004) Pitrilysin. In:Handbook of proteolytic enzymes, 2 edn. Barrett AJ, Rawlings ND and Woessner JF (eds). Elsevier, London, pp 868–871

    Google Scholar 

  • Rudhe C, Clifton R, Chew O, Zemam K, Richter S, Lamppa G, Whelan J, Glaser E (2004) Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. J Mol Biol 343:639–647

    PubMed  CAS  Google Scholar 

  • Schleiff E, Tien R, Salomon M, Soll J (2001) Lipid composition of outer leaflet of chloroplast outer envelope determines topology of OEP7. Mol Biol Cell 12:4090–4102

    PubMed  CAS  Google Scholar 

  • Schleiff E, Jelic M, Soll J (2003a) A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc Natl Acad Sci USA 100:4604–4609

    CAS  Google Scholar 

  • Schleiff E, Soll J, Küchler M, Kühlbrandt W, Harrer R (2003b) Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 160:541–551

    CAS  Google Scholar 

  • Schlegel T, Mirus O, von Haeseler A, Schleiff E (2007) The tetratricopeptide repeats of receptors involved in protein translocation across membranes. Mol Biol Evol 24:2763–2774

    PubMed  Google Scholar 

  • Schnell DJ, Blobel G (1993) Identification of intermediates in the pathway of protein import into chloroplasts and their localization to envelope contact sites. J Cell Biol 120:103–115

    PubMed  CAS  Google Scholar 

  • Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012

    PubMed  CAS  Google Scholar 

  • Schnell DJ, Blobel G, Kessler F, Keegstra K, Ko K, Soll J (1997) A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol 7:303–304

    PubMed  CAS  Google Scholar 

  • Schuenemann D (2004) Structure and function of the chloroplast signal recognition particle. Curr Genet 44:295–304

    CAS  Google Scholar 

  • Scott SV, Theg SM (1996) A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes:energetics and mechanistic implications. J Cell Biol 132:63–75

    PubMed  CAS  Google Scholar 

  • Seedorf M, Waegemann K, Soll S (1995) A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J 7:401–411

    PubMed  CAS  Google Scholar 

  • Shan SO, Walter P (2005) Co-translational protein targeting by the signal recognition particle. FEBS Lett 579:921–926

    PubMed  CAS  Google Scholar 

  • Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs ofEscherichia coliClpP and ClpA:an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722

    PubMed  CAS  Google Scholar 

  • Sjögren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosyn-thetic activity, and a specific reduction in photosystem content. Plant Physiol 136:4114–4126

    PubMed  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar:a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    PubMed  CAS  Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46:365–375

    PubMed  CAS  Google Scholar 

  • Smith MD, Hiltbrunner A, Kessler F, Schnell DJ (2002) The targeting of the at Toc159 preprotein recepter to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J Cell Biol 159:833–843

    PubMed  CAS  Google Scholar 

  • Smith MD, Rounds CM, Wang F, Chen K, Afitlhile M, Schnell DJ (2004) atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J Cell Biol 165:323–334

    PubMed  CAS  Google Scholar 

  • Sohrt K, Soll J (2000) Toc64, a new component of the protein translocon of chloroplasts. J Cell Biol 148:1213–1221

    PubMed  CAS  Google Scholar 

  • Sokolenko A Lerbs-Mache S Altschmied L, Herrmann RG (1998) Clp protease complexes and their diversity in chloroplasts. Planta 207:286–295

    PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    PubMed  CAS  Google Scholar 

  • Stahl T, Glockman C, Soll J, Heins L (1999) Tic40, a new “old“subunit of the chloroplast protein import translocon. J Biol Chem 274:37467–37472

    PubMed  CAS  Google Scholar 

  • Stengel A, Benz P, Balsera M, Soll J, Bölter B (2008) TIC62–redox-regulated translocon composition and dynamics. J Biol Chem /doi/10. 1074/jbc. M706719200

    Google Scholar 

  • Sun CW, Chen LJ, Lin LC, Li HM (2001) Leaf-specific upregulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. Plant Cell 13:2053–2061

    PubMed  CAS  Google Scholar 

  • Sun Y-J, Forouhar F, Li H-M, Tu S-L, Yeh Y-H, Kao S, Shr H-L, Chou C-C, Chen C, Hsiao C-D (2002) Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocation. Nat Struct Biol 9:95–100

    PubMed  Google Scholar 

  • Sveshnikova N, Grimm R, Soll J, Schleiff E (2000a) Topology studies of the chloroplast protein import channel Toc75. Biol Chem 381:687–693

    CAS  Google Scholar 

  • Sveshnikova N, Soll J, Schleiff E (2000b) Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proc Natl Acad Sci USA 97:4973–4978

    CAS  Google Scholar 

  • Teakle GR, Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyl- lide reductase from wheat (Triticum aestivum). Biochem J 296:225–230

    PubMed  CAS  Google Scholar 

  • Teng YS, Su YS, Chen LJ, Lee YJ, Hwang I, Li HM (2006) Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18:2247–2257

    PubMed  CAS  Google Scholar 

  • Theg S, Bauerle C, Olsen L, Selman B, Keegstra K (1989) Internal ATP is the only energy requirement for the translocation of precursor. J Biol Chem 264:6730–6736

    PubMed  CAS  Google Scholar 

  • Tranel PJ, Froehlich J, Goyal A, Keegstra K (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14:2436–2446

    PubMed  CAS  Google Scholar 

  • Tripp J, Inoue K, Keegstra K, Froehlich J (2007) A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. Plant J 52:824–838

    PubMed  CAS  Google Scholar 

  • Tsugeki R, Nishimura M (1993) Interaction of homologues of Hsp70 and Cpn60 with ferredoxin- NADP+ reductase upon its import into chloroplasts. FEBS Lett 320:198–202

    PubMed  CAS  Google Scholar 

  • Tu SL, Chen LJ, Smith MD, Su YS, Schnell DJ, Li HM (2004) Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc75. Plant Cell 16:2078–2088

    PubMed  CAS  Google Scholar 

  • van den Wijngaard PWJ, Vredenberg WJ (1997) A 50-pico-siemens anion channel of the chloro-plast envelope is involved in chloroplast import. J Biol Chem 272:29430–29433

    PubMed  Google Scholar 

  • van den Wijngaard PWJ, Vredenberg WJ (1999) The envelope anion channel involved in chloro-plast protein import is associated with Tic110. J Biol Chem 274:25201–25204

    PubMed  Google Scholar 

  • van den Wijngaard PWJ, Demmers JAA, Thompson SJ, Wienk HLJ, de Kruijff BD, Vredenberg WJ (2000) Further analysis of the involvement of the envelope anion channel PIRAC in chlo-roplast protein import. Eur J Biochem 267:3812–3817

    PubMed  Google Scholar 

  • VanderVere PS, Bennett TM, Oblong JE, Lamppa GK (1995) A chloroplast processing enzyme involved in precursor maturation shares a zinc-binding motif with a recently recognized family of metalloendopeptidases. Proc Natl Acad Sci USA 92:7177–7181

    PubMed  CAS  Google Scholar 

  • van't Hof R, Demel RA, Keegstra K, de Kruijff B (1991) Lipid–peptide interactions between fragments of the transit peptide of ribulose-1,5-bisphosphate carboxylase/oxygenase and chloro- plast membrane lipids. FEBS Lett 291:350–354

    Google Scholar 

  • van't Hof R, van Klompenburg W, Pilon M, Kozubek A, de Korte-Kool G, Demel RA, Weisbeek PJ, de Kruijff B (1993) The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane. J Biol Chem 268:4037–4042

    Google Scholar 

  • Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    PubMed  Google Scholar 

  • Voigt A, Jakob M, Klösgen RB, Gutensohn M (2005) At least two Toc34 protein import receptors with different specificities are also present in spinach chloroplasts. FEBS Lett 579:1343–1349

    PubMed  CAS  Google Scholar 

  • Vojta L, Soll J, Bölter B (2007) Protein transport in chloroplasts–targeting to the intermembrane space. FEBS J 274:5043–5054

    PubMed  CAS  Google Scholar 

  • von Heijne G (1995) Membrane protein assembly:rules of the game. Bioessays 17:25–30

    Google Scholar 

  • von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloro-plast targeting peptides. Eur J Biochem 180:535–545

    Google Scholar 

  • Waegemann K, Soll J (1991) Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J 1:149–158

    Google Scholar 

  • Waegemann K, Soll J (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271:6545–6554

    PubMed  CAS  Google Scholar 

  • Wallas TR, Smith MD, Sanchez-Nieto S, Schnell DJ (2003) The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts. J Biol Chem 278:44289–44297

    PubMed  CAS  Google Scholar 

  • Wan J, Bringloe D, Lamppa GK (1998) Disruption of chloroplast biogenesis and plant development upon down-regulation of a chloroplast processing enzyme involved in the import pathway. Plant J 15:459–468

    CAS  Google Scholar 

  • Weibel P, Hiltbrunner A, Brand L, Kessler F (2003) Dimerization of Toc-GTPases at the chloro-plast protein import machinery. J Biol Chem 278:37321–37329

    PubMed  CAS  Google Scholar 

  • Wu C, Seibert FS, Ko K (1994) Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem 269:32264–32271

    PubMed  CAS  Google Scholar 

  • Yeh YH, Kesavulu MM, Li HM, Wu SZ, Sun YJ, Konozy EH, Hsiao CD (2007) Dimerization is important for the GTPase activity of chloroplast translocon components atToc33 and psToc159. J Biol Chem 282:13845–13853

    PubMed  CAS  Google Scholar 

  • Young ME, Keegstra K, Froehlich JE (1999) GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. Plant Physiol 121:237–243

    PubMed  CAS  Google Scholar 

  • Yu T-S, Li H-M (2001) Chloroplast protein translocation components at Toc159 and at Toc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol 127:90–96

    PubMed  CAS  Google Scholar 

  • Zhong R, Wan J, Jin R, Lamppa G (2003) A pea antisense gene for the chloroplast stromal processing peptidase yields seedling lethals in Arabidopsis:survivors show defective GFP import in vivo. Plant J 34:802–812

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aronsson, H., Jarvis, P. (2009). The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. In: Sandelius, A.S., Aronsson, H. (eds) The Chloroplast. Plant Cell Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68696-5_3

Download citation

Publish with us

Policies and ethics