Skip to main content

Biomedical Application of Knowledge Discovery

  • Chapter
Literature-based Discovery

Part of the book series: Information Science and Knowledge Management ((ISKM,volume 15))

  • 666 Accesses

Abstract

With rapid progress in biomedical fields, the knowledge accumulated in scientific papers has increased significantly. Most of these papers draw only a frag-mental conclusion from the viewpoint of scientific facts, so discovery of hidden knowledge or hypothesis generation by leveraging this fragmental information has come into the limelight and more expectations on the system constructions to assist them has been paid. To respond to these expectations, we have developed a system called BioTermNet (http://btn.ontology.ims.u-tokyo.ac.jp:8081/) to make a conceptual network by connecting conceptual relationships (fragmental information) explicitly described in papers and explore the hidden relationships in the conceptual network. The conceptual relationships are extracted by hybrid methods of information extraction and information-retrieval techniques. This system has a potential for wide application. After the validation of system performance, we take up some topics of conceptual network-based analysis and refer to other applications in the future prospects section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swanson DR (1986) Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect Biol Med 30(1): 7–18

    Google Scholar 

  2. Weeber M, Vos R, Klein H, De Jong-Van Den Berg LT, Aronson AR, Molema G (2003) Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide. J Am Med Inform Assoc 10: 252–259

    Article  Google Scholar 

  3. Wren JD (2004) Extending the mutual information measure to rank inferred literature relationships. BMC Bioinformatics 5: 145

    Article  Google Scholar 

  4. Van der Eijk CC, van Mulligen EM, Kors JA, Barend M, van den Berg J (2004) Constructing an associative concept space for literature-based discovery. J Am Soc Inf Sci Technol 55(5): 436–444

    Article  Google Scholar 

  5. Srinivasan P, Libbus B (2004) Mining MEDLINE for implicit links between dietary substances and diseases. Bioinformatics 20(S1): 290–296

    Article  Google Scholar 

  6. Koike A, Takagi T (2007) Knowledge discovery based on an implicit and explicit conceptual network. J Am Soc Inf Sci Technol 58(1): 51–65

    Article  Google Scholar 

  7. Koike A, Takagi T (2004) Gene/protein/family name recognition in biomedical literature. Proceedings of HLT/NAACL BioLINK Workshop, Boston, MA, pp. 9–16

    Google Scholar 

  8. Koike A, Kobayashi Y, Takagi T (2003) Kinase pathway database: an integrated protein-kinase and NLP-based protein-interaction resource. Genome Res 13: 1231–1243

    Article  Google Scholar 

  9. Koike A, Takagi T (2005) PRIME: Automatically extracted PRotein Interactions and Molecular NLP-based information databasE. In Silico Biol 5(1): 9–20

    Google Scholar 

  10. Koike A, Niwa Y, Takagi T (2005) Automatic extraction of gene/protein biological functions from biomedical text. Bioinformatics 21: 1227–1236

    Article  Google Scholar 

  11. Singhal A, Buckley C, Mitra M (1996) Pivoted document length normalization. Proceedings of ACM SIGIR’96, Zurich, Switzerland, pp. 21–29

    Google Scholar 

  12. Fujita S (2004) Revisiting again document length hypotheses. TREC-2004 Genomics Track experiments at Patolis. Proceedings of TREC Genome Track

    Google Scholar 

  13. Hisamitsu T, Niwa Y (2004) A measure of representativeness based on the number of co-occurring salient words. Proceedings of the 19th International Conference on Computational Linguistics Workshop, pp. 9–16

    Google Scholar 

  14. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41 (6): 391–407

    Article  Google Scholar 

  15. Berry MW. Browne M (1999) Understanding search engines: mathematical modeling and text retrieval. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  16. http://www.netlib.org/svdpack/

  17. http://www.hprd.org/

  18. Koike A (2006) Knowledge discovery and hypothesis generation from biomedical texts. Workshop on Information-Based Induction Sciences, pp. 52–58

    Google Scholar 

  19. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

  20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology consortium. Nat Genet 25(1): 25–29

    Google Scholar 

  21. Homayouni R, Heinrich K, Wei L, Berry MW (2005) Gene clustering by latent semantic indexing of MEDLINE abstracts. Bioinformatics 21(1): 104–115

    Article  Google Scholar 

  22. Swanson DR (1988) Migraine and magnesium: eleven neglected connections. Perspect Biol Med 31(4): 552–557

    Google Scholar 

  23. Swanson DR (1990) Somatomedin C and arginine: implicit connections between mutually isolated literatures. Perspect Biol Med 33: 157–186

    Google Scholar 

  24. Smallheiser NR, Swanson, DR (1996) Indomethacin and Alzheimer’s disease. Neurology 46(2): 583

    Google Scholar 

  25. Smallheiser NR, Swanson DR (1998) Calcium-independent phospholipase A2 and schizophrenia. Arch Gen Phychiatry 55(8): 752–753

    Article  Google Scholar 

  26. Hankey GJ, Eikelboom JW (2004) Aspirin resistance. BMJ 328(7438): 477–479

    Article  Google Scholar 

  27. Maree AO, Curtin RJ, Chubb A, Dolan C, Cox D, O’Brien J, Crean P, Shields DC, Fitzgerald DJ (2005) Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J Thromb Haemost 3(10): 2340–2345

    Article  Google Scholar 

  28. Pamukcu B, Oflaz H, Nisanci Y (2005) The role of platelet glycoprotein IIIa polymorphism in the high prevalence of in vitro aspirin resistance in patients with intracoronary stent restenosis. Am Heart J 149(4): 675–680

    Article  Google Scholar 

  29. http://www.hapmap.org

  30. Wang Q, Rao S, Shen G-Q, Li L, Moliterno DJ, Newby LK, Rogers WJ, Cannata R, Zirzow E, Elston RC, Topol EJ (2004) Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis. Am J Hum Genet 74: 262–271

    Article  Google Scholar 

  31. Arencibia JM, Del Rio M, Bonnin A, Lopes R, Lemoine NR, Lopez-Barahona M (2005) Doxazosin induces apoptosis in LNCaP prostate cancer cell line through DNA binding and DNA-dependent protein kinase down-regulation. Int J Oncol 27: 1617–1623

    Google Scholar 

  32. Zhao H, Lai F, Nonn L, Brooks JD, Peehl DM (2005) Molecular targets of doxazosin in human prostatic stromal cells. Prostate 62(4): 400–410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koike, A. (2008). Biomedical Application of Knowledge Discovery. In: Bruza, P., Weeber, M. (eds) Literature-based Discovery. Information Science and Knowledge Management, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68690-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68690-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68685-9

  • Online ISBN: 978-3-540-68690-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics