Skip to main content

Comparing Dissimilarity Measures for Content-Based Image Retrieval

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 4993)

Abstract

Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.

Keywords

  • dissimilarity measure
  • feature space
  • content-based image retrieval

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-68636-1_5
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-68636-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C.-C., Chu, H.-T.: Similarity measurement between images. In: Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC 2005), IEEE, Los Alamitos (2005)

    Google Scholar 

  2. Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary Detection by Constrained Optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 609–628 (1990)

    CrossRef  Google Scholar 

  3. Howarth, P., Rüger, S.: Fractional distance measures for content-based image retrieval. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, Springer, Heidelberg (2005)

    Google Scholar 

  4. Kokare, M., Chatterji, B., Biswas, P.: Comparison of similarity metrics for texture image retrieval. In: Proceeding of IEEE Conf. on Convergent Technologies for Asia-Pacific Region, vol. 2, pp. 571–575 (2003)

    Google Scholar 

  5. Luke, B.T.: Pearson’s correlation coefficient. Online (1995)

    Google Scholar 

  6. Noreault, T., McGill, M., Koll, M.B.: A performance evaluation of similarity measures, document term weighting schemes and representations in a Boolean environment. In: Proceeding of the 3rd annual ACM Conference on Research and development in inforamtion retreval, SIGIR 1980, Kent, UK, pp. 57–76. ACM, Butterworth Co. (1980)

    Google Scholar 

  7. Ojala, T., Pietikainen, M., Harwood, D.: Comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)

    CrossRef  Google Scholar 

  8. Pickering, M.J., Rüger, S.: Evaluation of key frame-based retrieval techniques for video. Computer Vision and Image Understanding 92(2-3), 217–235 (2003)

    CrossRef  Google Scholar 

  9. Puzicha, J.: Distribution-Based Image Similarity, ch. 7, pp. 143–164. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  10. Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Juan (1997)

    Google Scholar 

  11. Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.M.: Empirical evaluation of dissimilarity measures for color and texture. In: Proceeding of the international conference on computer vision, vol. 2, pp. 1165–1172 (September 1999)

    Google Scholar 

  12. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2004)

    CrossRef  Google Scholar 

  13. Zhang, D., Lu, G.: Evaluation of similarity measurement for image retrieval. In: Procedding of IEEE International Conference on Neural Networks Signal, Nanjing, December 2003, pp. 928–931. IEEE, Los Alamitos (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Song, D., Rüger, S., Hu, R., Uren, V. (2008). Comparing Dissimilarity Measures for Content-Based Image Retrieval. In: Li, H., Liu, T., Ma, WY., Sakai, T., Wong, KF., Zhou, G. (eds) Information Retrieval Technology. AIRS 2008. Lecture Notes in Computer Science, vol 4993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68636-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68636-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68633-0

  • Online ISBN: 978-3-540-68636-1

  • eBook Packages: Computer ScienceComputer Science (R0)