Skip to main content

Numerical Solution Methods

  • Chapter
Book cover Chemical Reactor Modeling
  • 5023 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alipanah A, Razzaghi M, Dehghan M (2007) Nonclassical pseudospectral method for the solution of brachistochrone problem. Chaos, Solitons and Fractals 34:1622-1628

    MathSciNet  Google Scholar 

  2. Amsden AA, Harlow FH (1970) The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows. Los Alamos Scientific Laboratory Report 4370

    Google Scholar 

  3. Andersson HI, Kristoffersen R (1989) Numerical simulation of unsteady viscous flow. Arch Mech 41(2-3):207-223

    Google Scholar 

  4. Anderson JD Jr (1995) Computational Fluid Dynamics: The basics with Applications. McGraw-Hill Inc, New York

    Google Scholar 

  5. Antal SP, Ettorre SM, Kunz RF, Podowski MZ (2000) Development of a Next Generation Computer Code for the Prediction of Multicomponent Multiphase Flows. International Meeting on Trends in Numerical and Physical Modeling for Industrial Multiphase Flow, Cargese, France, September 27-29

    Google Scholar 

  6. Antal SP, Lahey Jr RT, Al-Dahhan MH (2004) Simulating Churn-Turbulent Flows in a Bubble Column using a Three Field, Two-Fluid Model. Paper presented at the 5th International Conference on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30-June 4, Paper No 182

    Google Scholar 

  7. Arakawa A (1966) Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I. J Comput Phys 1:119-143

    MATH  Google Scholar 

  8. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang J (ed) Methods in Computational Physics, Academic Press, New York, Vol 17, pp 173-265

    Google Scholar 

  9. Bates JR, McDonald A (1982) Multiply-Upstream, Semi-Lagrangian Advective Schemes: Analysis and Application to a Multi-Level Primitive Equation Model. Mon Wea Rev 110:1831-1842

    Google Scholar 

  10. Berge E, Jakobsen HA (1998) A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus B50(3):205-223

    Google Scholar 

  11. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Second Edition, John Wiley & Sons, New York

    Google Scholar 

  12. Bochev P (2001) Finite Element Methods Based on Least-Squares and Modified Variational Principles. Technical Report, POSTECH

    Google Scholar 

  13. Boris JP, Book DL (1973) Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works. Journal of Computational Physics, 11:38-69

    Google Scholar 

  14. Bott A (1989) A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon Wea Rev 117:1006-1015

    Google Scholar 

  15. Bott A (1989) Reply. Mon Wea Rev 117:2633-2636

    Google Scholar 

  16. Bove S (2005) Computational Fluid Dynamics of Gas-Liquid Flows Including Bubble Population Balances. PhD thesis, Aalborg University Esbjerg, Danmark

    Google Scholar 

  17. Boyd JP (2001) Chebyshev and Fourier spectral methods. 2nd Edition, Dover, Mineola

    MATH  Google Scholar 

  18. Brandt A (1977) Multi-Level Adaptive Solutions to Boundary-Value Problems. Mathematics of Computation 31:333-390

    MATH  MathSciNet  Google Scholar 

  19. Brandt A (1981) Multigrid solvers on parallel computers. In: Schultz MH (ed) Elliptic Problem Solvers, New York, Academic Press, pp 39-84

    Google Scholar 

  20. Briggs WL (1987) A Multigrid Tutorial. 2nd Edition, SIAM Publications

    Google Scholar 

  21. Burns A, Splawsky A, Lo S, Guetari C (2001) Application of coupled technology to CFD modeling of multiphase flows with CFX. In: Power H, Brebbia CA (eds) Computational Methods in Multiphase Flow, WIT Press, Southampton. Proceedings of the 1st International Conference on Computational Methods in Multiphase Flow, 14-16 March 2001, Orlando, Florida

    Google Scholar 

  22. Canuto C, Quarteroni A, Hussaini MY, Zang T (1988) Spectral Methods in Fluid Mechanics. Springer-Verlag, New York

    Google Scholar 

  23. Caretto LS, Curr RM, Spalding DB (1972) Two Numerical Methods for Three Dimensional Boundary Layers. Comp Meth Appl Eng 1:39-57

    MATH  Google Scholar 

  24. Carrica PM, Drew D, Bonetto F, Lahey Jr RT (1999) A Polydisperse Model for Bubbly Two-Phase Flow Around a Surface Ship. Int J Multiphase Flow 25(2):257-305

    MATH  Google Scholar 

  25. Carver MB (1981) Conservation and Pressure-Continuity Relationship in Multidimensional Two Fluid Computation. In: Vichnevetsky R (ed) Advances in Computer Methods for Partial Differential Equations IV. IMACS Press, pp 168-175

    Google Scholar 

  26. Carver MB (1984) Numerical Computation of Phase Separation in Two Fluid Flow. J Fluids Eng 106:147-153

    Google Scholar 

  27. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329-364

    MathSciNet  Google Scholar 

  28. Cheney W, Kincaid D (2008) Numerical Mathematics and Computing. Thomson-Brooks/Cole Publishing Company, Belmont, Califonia, 6th Edition

    Google Scholar 

  29. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12-26

    MATH  Google Scholar 

  30. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22:745-762

    MATH  MathSciNet  Google Scholar 

  31. Courant R, Isaacson E, Reeves M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Comm Pure and Applied Mathematics 5:243-255

    MATH  MathSciNet  Google Scholar 

  32. Dabdub D, Seinfeld JH (1994) Numerical Advective Schemes Used in Air Quality Models - Sequential and Parallell Implementation. Atm Env 28(20):3369-3385

    Google Scholar 

  33. Demirdžić I, Lilek Ž, Perić M (1993) A Collocated Finite Volume Method for Predicting Flows at all Speeds. Int J Numer Methods Fluids 16:1029-1050

    Google Scholar 

  34. Deville MO, Fischer PF, Mund EH (2002) High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Donea J, Huerta A (2003) Finite Element Methods for Flow Problems. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  36. Dorao CA, Jakobsen HA (2005) An evaluation of selected numerical methods for solving the population balance equation. In: Fourth International Conference on CFD in the Oil and Gas, Metallurgical & Process Industries. SINTEF/NTNU Trondheim, Norway, 6-8 June

    Google Scholar 

  37. Dorao CA, Jakobsen HA (2005) Time-space least-squares spectral element method for population balance equations. In: Advances in Computational Methods in Science and Engineering 2005, ICCMSE, 21-26 October 2005, Greece. Lecture Series on Computer and Computational Sciences. Volume 4A, pp 171-174

    Google Scholar 

  38. Dorao CA (2006) High Order Methods for the Solution of the Population Balance Equation with Applications to Bubbly Flows. PhD thesis, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  39. Dorao CA, Jakobsen HA (2006) A least squares method for the solution of population balance problems. Computers and Chemical Engineering 30:535-547

    Google Scholar 

  40. Dorao CA, Jakobsen HA (2006) Application of the least-squares method for solving population balance problems in Rd+1. Chem Eng Sci 61:5070-5081

    Google Scholar 

  41. Dorao CA, Jakobsen HA (2006) Numerical calculation of the moments of the population balance equation. Journal of Computational and Applied Mathematics 196:619-633

    MATH  MathSciNet  Google Scholar 

  42. Dorao CA, Jakobsen HA (2007) A parallel time-space least-squares spectral element solver for incompressible flow problems. Applied Mathematics and Computation 185(1):45-58

    MATH  MathSciNet  Google Scholar 

  43. Dorao CA, Jakobsen HA (2007) Time-space-property least squares spectral method for population balance problems. Chem Eng Sci 62(5):1323-1333

    Google Scholar 

  44. Dorao CA, Jakobsen HA (2007) Least-squares spectral method for solving advective population balance problems. Journal of Computational and Applied Mathematics 201(1):247-257

    MATH  MathSciNet  Google Scholar 

  45. Drikakis D, Rider W (2005) High-Resolution Methods for Incompressible and Low-Speed Flows. Part II, Chapter 10, pp 173-208, Springer, Berlin, ISBN 978-3-540-22136-4

    Google Scholar 

  46. Fan R, Marchisio DL, Fox RO (2004) Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technology 139:7-20

    Google Scholar 

  47. Felten FN, Lund TS (2006) Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow. J Comput Phys 215:465-484

    MATH  MathSciNet  Google Scholar 

  48. Fernandino M, Dorao CA, Jakobsen HA (2007) Jacobi Galerkin spectral method for cylindrical and spherical geometries. Chem Eng Sci, in press

    Google Scholar 

  49. Ferziger JH, Peric M (1996) Computational Methods for Fluid Dynamics. Springer, Berlin.

    MATH  Google Scholar 

  50. Ferziger JH (1998) Numerical Methods for Engineering Applications. Second edition, John Wiley & Sons Inc, New York

    Google Scholar 

  51. Finlayson BA (1972) The Method of Weighted Residuals and Variational Principles: with application in fluid mechanics, heat and mass transfer. Academic Press, New York

    MATH  Google Scholar 

  52. Fletcher R (1976) Conjugrate gradient methods for infinite systems. In: Proceedings of the Dundee Conference on Numerical Analysis, 1975, volume 506 of Lecture Notes in Mathematics, pp 73-89. Springer-Verlag, Berlin

    Google Scholar 

  53. Fletcher CAJ (1991) Computational Techniques for Fluid Dynamics. Vols I and II, Springer-Verlag, Berlin

    Google Scholar 

  54. Fornberg B (1998) A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  55. Forsythe GE, WasoW WR (1960) Finite-Difference Methods for Partial Differential Equations. John Wiley & Sons inc, New York

    MATH  Google Scholar 

  56. Fortin M, Peyert R, Temam R (1971) Résolution numérique des équations de Navier-Stokes pour un fluide incompressible. J Méc 10:357-390

    MATH  Google Scholar 

  57. Frank T, Zwart PJ, Shi J-M, Krepper E, Lucas D, Rohde U (2005) Inhomogeneous MUSIG Model - a Population Balance Approach for Polydispersed Bubbly Flows. Int Conf Nuclear Energy for New Europe 2005, Bled, Slovenia, September 5-8

    Google Scholar 

  58. Gaskell PH, Lau AKC (1988) Curvature-compensated Convective Transport: SMART, a new boundedness preserving transport algorithm. Int J Numer Meth Fluids 8:617-641

    MATH  MathSciNet  Google Scholar 

  59. Gosman AD, Pun WM (1974) Calculation of recirculating flows. Report No HTS/74/2, Department of Mechanical Engineering, Imperial College, London

    Google Scholar 

  60. Gottlieb D, Orszag SA (1977) Numerical Analysis of Spectral Methods. SIAM, Philadelphia

    MATH  Google Scholar 

  61. Grace JR, Taghipour F (2004) Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technology 139:99-110

    Google Scholar 

  62. Grandin H Jr (1991) Fundamentals of the Finite Element Method. Waveland Press, Inc, Prospect Heights, Illinois

    Google Scholar 

  63. Grienberger J (1992) Untersuchung und Modellierung von Blasensäulen. Dr ing Thesis, Der Technischen Fakultät der Universität Erlangen-Nürnberg, Germany

    Google Scholar 

  64. Gudunov SK (1959) A difference scheme for numerical calculation of discontinuous solutions of hydrodynamic equations. Matematichaskiy Sbornik (Mathematics collection), 47(3):271-306 (in Russian). English Translation: US Joint Publications Research Service, JPRS-7225 (1960).

    Google Scholar 

  65. Hackbusch W (1985) Multigrid Methods and Applications. Springer, Berlin

    Google Scholar 

  66. Haltiner GJ, Williams RT (1980) Numerical Prediction and Dynamic Meteorology, 2nd Edition, Wiley, New York

    Google Scholar 

  67. Harlow FH, Welch JE (1965) Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics and Fluids 8:2182-2189

    Google Scholar 

  68. Harlow FH, Amsden AA (1971) A Numerical Fluid Dynamics Calculation Method for All Flow Speeds. J Comput Phys 8:197-213

    MATH  Google Scholar 

  69. Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357-393

    MATH  MathSciNet  Google Scholar 

  70. Hestenes MR, Stiefel E (1952) Methods of Conjugate Gradients for Solving Linear Systems. J Res NBS 49(6):409-436

    MATH  MathSciNet  Google Scholar 

  71. Hirsch C (1988) Numerical Computation of Internal and External Flows. Volume I: Fundamentals of Numerical Discretization. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  72. Hirsch C (1990) Numerical Computation of Internal and External Flows. Volume II: Computational Methods for Invicid and Viscous Flows. John Wiley & Sons, Chichester.

    Google Scholar 

  73. Hirt CW, Nichols BD, Romero NC (1975) SOLA- A Numerical Solution Algorithm for Transient Fluid Flows. Los Alamos Scientific Laboratory Report 5852

    Google Scholar 

  74. Hounslow MJ, Ryall RL, Marshall VR (1988) A Discretized Population Balance for Nucleation, Growth, and Aggregation. AIChE J 34:1821-?

    Google Scholar 

  75. Hughes TJR (1987) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  76. Hutchinson BR, Raithby GD (1986) A Multigrid Based on the Additive Correction Strategy. Numerical Heat Transfer 9:511-537

    Google Scholar 

  77. Hutchinson BR, Galpin PF, Raithby GD (1988) Application of Additive Correction Multigrid to the Coupled Fluid Flow Equations. Numerical Heat Transfer 13:133-147

    MATH  Google Scholar 

  78. Issa RI, Lockwood FC (1977) On the Prediction of Two-Dimensional Supersonic Viscous Interactions Near Walls. AIAA J 15(2):182-188

    MATH  Google Scholar 

  79. Issa RI (1986) Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting. J Comput Phys 62:40-65

    MATH  MathSciNet  Google Scholar 

  80. Jakobsen HA (1993) On the Modeling and Simulation of Bubble Column Reactors Using a Two-Fluid Model. Dr ing Thesis, the Norwegian Institute of Technology, Trondheim, Norway

    Google Scholar 

  81. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors. Computers and Chemical Engineering 26:333-357

    Google Scholar 

  82. Jakobsen HA (2003) Numerical Convection Algorithms and Their Role in Eulerian CFD Reactor Simulations. International Journal of Chemical Reactor Engineering A1:1-15

    MathSciNet  Google Scholar 

  83. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of Bubble Column Reactors: Progress and Limitations. Ind Eng Chem Res 44:5107-5151

    Google Scholar 

  84. Jiang B The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, Berlin

    Google Scholar 

  85. Jonson JE, Bartnicki J, Olendrzynski K, Jakobsen HA, Berge E (1998) EMEP Eulerian model for atmospheric transport and deposition of nitrogen species over Europe. Environmental Pollution 102:289-298, Suppl 1

    Google Scholar 

  86. Karema H, Lo S (1999) Efficiency of interface coupling algorithms in fluidized bed conditions. Computers & Fluids 28:323-360

    MATH  Google Scholar 

  87. Karki KC, Patankar SV (1989) Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations. AIAA J 27(9):1167-1174

    Google Scholar 

  88. Karki KC, Patankar SV (2004) Application of the partial elimination algorithm for solving the coupled energy equations in porous media. Numerical Heat Transfer, Part A 45:539-549

    Google Scholar 

  89. Karniadakis GEM, Sherwin SJ (1999) Spectral/hp Element Methods for CFD. Oxford University Press, New York

    MATH  Google Scholar 

  90. Kelly JM, Stewart CW, Cuta JM (1992) VIPRE-02 - A two-fluid thermal-hydraulics code for reactor core and vessel analysis: Mathematical modeling and solution methods. Nucear Technology 100:246-259

    Google Scholar 

  91. Khosla PK, Rubin SG (1974) A diagonally dominant second order accurate implicit scheme. J Comput Fluids 2:207-209

    MATH  Google Scholar 

  92. Kim J, Moin P (1985) Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations. J Comput Phys 59:308-323

    MATH  MathSciNet  Google Scholar 

  93. Kiusalaas J (2005) Numerical Methods in Engineering with Python. Cambridge University Press, New York

    Google Scholar 

  94. Kreiss H-O, Oliger J (1972) Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24:199-215

    MathSciNet  Google Scholar 

  95. Krepper E, Lucas D, Prasser H-M (2005) On the modelling of bubbly flow in vertical pipes. Nucl Eng Des 235:597-611

    Google Scholar 

  96. Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations. Chem Eng Sci 54:4903-4911

    Google Scholar 

  97. Krishna R, van Baten JM (2001) Scaling up Bubble column reactors with the aid of CFD. Inst Chem Eng Trans IChemE 79(A3):283-309.

    Google Scholar 

  98. Kunz RF, Yu W-S, Antal SP, Ettorre SM (2001) An Unstructured Two-Fluid Method Based on the Coupled Phasic Exchange Algorithm. Report AIAA-2001-2672, American Institute of Aeronautics and Astronautics, Herndon, VA

    Google Scholar 

  99. Kunz RF, Siebert BW, Cope WK, Foster NF, Antal SP, Ettorre SM (1998) A coupled phasic exchange algorithm for three-dimensional multi-field analysis of heated flows with mass transfer. Computers & Fluids 27(7):741-768

    MATH  Google Scholar 

  100. Kwak D, Kiris C, Dacles-Mariani J (1998) An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations. In (ed) Bruneau CH Sixteenth International Conference on Numerical Methods in Fluid Dynamics. Springer, Berlin, Volume 515. Proceedings of the Conference Held in Arcachon, France, 6-10 July 1998

    Google Scholar 

  101. Lanczos C (1938) Trigonometric Interpolation of Empirical and Analytical Functions. J Math Phys 17:123-199

    MATH  Google Scholar 

  102. Lapidus L, Pinder GF (1992) Numerical Solution of Partial Differential Equations in Science and Engineering. John Wiley & Sons, New York

    Google Scholar 

  103. Lathouwers D, van den Akker HEA. (1996) A numerical method for the solution of two-fluid model equations. In: Numerical methods for multiphase flows. FED-Vol 236, pp 121-126, ASME

    Google Scholar 

  104. Lathouwers D (1999) Modeling and simulation of turbulent bubbly flow. PhD thesis, the Technical University in Delft, the Netherlands

    Google Scholar 

  105. Lax PD (1954) Weak solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation. Communication on Pure and Applied Mathematics 7:159-193

    MATH  MathSciNet  Google Scholar 

  106. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59-98

    MATH  Google Scholar 

  107. Leonard BP (1988) Universal limiter for transient interpolation modeling of the advective transport equations: The ULTIMATE conservative difference scheme. Science report NASA-TM 100916 (ICOMP-88-11), NASA Lewis Research Center.

    Google Scholar 

  108. Leonard BP, Mokhtari S (1990) Beyond first-order upwinding: The ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection. International Journal of Numerical Methods in Engineering 30:729-766

    Google Scholar 

  109. Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Methods Appl Mech Eng 88:17-74

    MATH  Google Scholar 

  110. Leonard BP, Niknafs (1991) SHARP Monotonic Resolution of Discontinuities Without Clipping of Narrow Extrema. Computers & Fluids 19(1):141-154

    Google Scholar 

  111. Leonard BP, Mokhtari S (1992) ULTRA-SHARP solution of the Smith-Hutton problem. Int J Num Heat Flow 2:407-427

    Google Scholar 

  112. Leonard BP, MacVean MK, Lock AP (1995) The flux integral method for multidimensional convection and diffusion. Applied Mathematical Modelling 19:333-342

    MATH  Google Scholar 

  113. Leonard BP, Lock AP, MacVean MK (1995) The NIRVANA Scheme Applied to One-Dimensional Advection. Int J Meth Heat Fluid Flow 5:341-377

    MATH  MathSciNet  Google Scholar 

  114. Leonard BP (1995) Order of accuracy of QUICK and related convection-diffusion schemes. Appl Math Modelling 19:640-653

    Google Scholar 

  115. Leonard BP, Drummond JE (1995) Why you should not use hybrid, power-law or related exponential schemes for convective modeling-There are much better alternatives. Int J Numer Methods Fluids 20:421-442

    MATH  Google Scholar 

  116. Leonard BP, Lock AP, MacVean MK (1996) Conservative Explicit Unrestricted-Time-Step Multidimensional Constancy-Preserving Advection Schemes. Mon Wea Rev 124:2588-2606

    Google Scholar 

  117. Le Veque RJ (1992) Numerical methods for conservation laws. Birkhauser Verlag, Basel

    Google Scholar 

  118. Lindborg H, Eide V, Unger S, Henriksen ST, Jakobsen HA (2004) Parallelization and performance optimization of a dynamic PDE ractor model for practical applications. Computers and Chemical Engineering 28:1585-1597

    Google Scholar 

  119. Lindborg H, Lysberg M, Jakobsen HA (2007) Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds. Chem Eng Sci 62:5854-5869

    Google Scholar 

  120. MacCormack RW (1969) The effect of viscosity in hypervelocity impact cratering. AIAA paper no 69-354

    Google Scholar 

  121. Marchi CH, Maliska CR (1994) A Non-orthogonal Finite-Volume Method for the Solution of All Speed Flows Using Co-Located Variables. Numerical Heat Transfer, Part B, 26:293-311

    Google Scholar 

  122. Marchisio DL, Vigil RD Fox RO (2003) Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem Eng Sci 58(15):3337-3351

    Google Scholar 

  123. Marchisio DL, Vigil RD Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. Journal of Colloid and Interface Science 258(2):322-334

    Google Scholar 

  124. Marchuk GI (1974) Numerical Methods in Weather Prediction. Academic Press, New York

    Google Scholar 

  125. Melaaen MC (1992) Calculation of Fluid Flows with Staggered and Nonstaggered Curvilinear Nonorthogonal Grids-the Theory. Numerical Heat Transfer, Part B, 21(1):1-19

    Google Scholar 

  126. Melaaen MC (1992) Calculation of Fluid Flows with Staggered and Nonstaggered Curvilinear Nonorthogonal Grids-a Comparison. Numerical Heat Transfer, Part B, 21(1):21-39

    Google Scholar 

  127. Mercle CL, Athavale M (1987) Time-Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility. AIAA Paper 87-1137, AIAA Press Washington, DC

    Google Scholar 

  128. McBryan OA, van de Velde EF (1987) Hypercube algorithms and implementations. SIAM Journal on Scientific and Statistical Computing 8:5227-5287

    Google Scholar 

  129. McDonald A (1984) Accuracy of Multiply-Stream, Semi-Lagrangian Advective Schemes. Mon Wea Rev 112:1267-1275

    Google Scholar 

  130. McDonald A (1987) Accuracy of Multiply-Stream, Semi-Lagrangian Advective Schemes II. Mon Wea Rev 115:1446-11450

    Google Scholar 

  131. McGraw R (1997) Description of Aerosol Dynamics by the Quadrature Method of Moments. Aerosol Science and Technology 27:255-265

    Google Scholar 

  132. Mercier B (1989) An Introduction to the Numerical Analysis of Spectral Methods. Springer-Verlag, Berlin

    MATH  Google Scholar 

  133. Moukalled F, Darwish M (2000) A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds. Numerical Heat Transfer, Part B, 37:103-139

    Google Scholar 

  134. Nakamura S (2002) Numerical Analysis and Graphic Visualization with MATLAB. Second Edition, Prentice Hall PTR, Upper Saddle River, New Jersey

    Google Scholar 

  135. O’Brien CG, Hyman MA, Kaplan S (1959) A study of the numerical solution of partial differential equations. J Math Phys 29:223-251

    MathSciNet  Google Scholar 

  136. Odman MT (1997) A quantitative analysis of numerical diffusion introduced by advection algorithms in air quality models. Atm Env 31(13):1933-1940

    Google Scholar 

  137. Olendrzynski K, Jonson JE, Bartnicki J, Jakobsen HA, Berge E (2000) EMEP Eulerian model for acid deposition over Europe. Int J Environment and Pollution 14(1-6):391-399

    Google Scholar 

  138. Oliveira PJ, Issa RI (1994) On the numerical treatment of interfaphase forces in two-phase flow. In: Crowe CT (ed) Numerical Methods in Multiphase Flows, FED-Vol 185, pp 131-140, ASME Press, New York

    Google Scholar 

  139. Orszag SA (1972) Comparison of pseudospectral and spectral approximations. Stud Appl Math 51:253-259

    MATH  Google Scholar 

  140. Patankar SV, Spalding DB (1972) A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Int J Heat Mass Transfer 15:1787-1806

    MATH  Google Scholar 

  141. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere publishing corporation, New York

    MATH  Google Scholar 

  142. Pfleger D, Becker S (2001) Modeling and simulation of the dynamic flow behaviour in a bubble column. Chem Eng Sci 56(4):1737-1747.

    Google Scholar 

  143. Phillips NA (1956) The general circulation of the atmosphere: a numerical experiment. Quart J Roy Meteorol Soc 82:123-164

    Google Scholar 

  144. Phillips NA (1959) An example of non-linear computational instability. In: The Atmosphere and Sea in Motion, pp 501-504, Rockefeller Inst Press, New York, and Oxford University Press

    Google Scholar 

  145. Piacsek SA, Williams GP (1970) Conservation Propeties of Convection Difference Schemes. J Comput Phys 6:392-405

    MATH  Google Scholar 

  146. Pontaza JP (2003) Least-Squares Variational Principles and Finite Element Methods: Theory, formulations, and Models for Solid and Fluid Mechanics. PhD thesis, Texas A & M University, USA

    Google Scholar 

  147. Post D, Kendall R (2003) Software project management and quality engineering practices for complex, coupled multiphysics, massively parallel computational simulations: Lessons learned from ASCI. The International Journal of High Performance Computing Applications 18(4):399-416

    Google Scholar 

  148. Prather MJ (1986) Numerical Advection by Conservation of Second Order Moments. Journal of Geophysical Research, 91(D6):6671-6681

    Google Scholar 

  149. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77. The Art of Scientific Computing. 2. edition, Volume 1, Cambridge University Press

    Google Scholar 

  150. Proot MMJ (2003) The Least-Squares Spectral Element Method. PhD thesis, Delft University of Technology, the Netherlands

    Google Scholar 

  151. Ramkrishna D (2000) Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press, San Diego

    Google Scholar 

  152. Rao SS (2002) Applied Numerical Methods for Engineers and Scientists. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  153. Raw M (1994) A Coupled Algebraic Multigrid Method for the 3D Navier-Stokes Equations. In: Hackbusch W, Wittum G (eds) Fast Solvers for Flow Problems. Proceedings of the 10th GAMM-Seminar Kiel, January 14 to 16, 1994. Notes on Numerical Fluid Mechanics Vol 49, Vieweg-Verlag, Braunschweig, Wiesbaden, Germany

    Google Scholar 

  154. Raw M (1996) Robustness of Coupled Algebraic Multigrid for the Navier-Stokes Equations. Technical Paper AIAA 96-0297, AIAA Press, Washington, DC, Presented at 34th Aerospace Science Meeting & Exhibit, January 15-18, Reno, NV

    Google Scholar 

  155. Rhie CM, Chow WL (1983) Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA J 21(11):1525-1532

    MATH  Google Scholar 

  156. Richtmyer RD, Morton KW (1967) Difference methods for initial value problems. Wiley, New York

    MATH  Google Scholar 

  157. Roache PJ (1992) A Flux-Based Modified Method of Characteristics. Internasjonal Journal for Numerical Methods in Fluids 15:1259-1275

    MATH  Google Scholar 

  158. Roache PJ (1998) Fundamentals of Computational Fluid Dynamics. Hermosa Publishers, New Mexico

    Google Scholar 

  159. Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357-372

    MATH  MathSciNet  Google Scholar 

  160. Roe PL (1985) Some contributions to the modeling of discontinuous flow. Lectures in Applied Mathematics 22:163-192

    MathSciNet  Google Scholar 

  161. Roe PL (1986) Characteristic-based schemes for the Euler equations. Annual Reviews in Fluid Mechanics 18:337-365

    MathSciNet  Google Scholar 

  162. Rood RB (1987) Numerical Advection Algorithms and Their Role in Atmospheric Transport and Chemistry Models. Reviews of Geophysics 25(1):71-100

    Google Scholar 

  163. Roy CJ (2005) Review of code and solution verification procedures for computational simulation. J Comput Phys 205:131-156

    MATH  Google Scholar 

  164. Russell GL, Lerner JA (1981) A Finite-Difference Scheme for the Tracer Transport Equation. Journal of Applied Meteorology 20:1483-1498

    Google Scholar 

  165. Saad Y, Shultz MH (1986) GMRES: A Generalized Minimal Residual Algorithm for solving Nonsymmetric Linear Systems. SIAM J Scientific and Stat Comp 7(3):856-869

    MATH  Google Scholar 

  166. Saad Y (2003) Iterative Methods for Sparse Linear Systems. 2nd Edition, SIAM, Philadelphia

    MATH  Google Scholar 

  167. Schiesser WE (1991) The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego

    MATH  Google Scholar 

  168. Sha Z, Laari A, Turunen I (2004) Implementation of Population Balance into Multiphase-Model in CFD Simulation of Bubble Column. Proc of the 16th Int Congress of Chem Eng, Praha, Czech Republic (paper E3.2)

    Google Scholar 

  169. Sha Z, Laari A, Turunen I (2006) Multi-Phase-Multi-Size-Group Model for the Inclusion of Population Balances into the CFD Simulation of Gas-Liquid Bubbly Flows. Chem Eng Technol 29(5):550-559

    Google Scholar 

  170. Shampine LF (1994) Numerical solution of ordinary differential equations. Chapman & Hall, New York

    MATH  Google Scholar 

  171. Shi J, Zwart P, Frank T, Rohde U, Prasser H (2004). Development of a multiple velocity multiple size group model for poly-dispersed multiphase flows. Annual Report 2004. Institute of Safety Research, Forschungszentrum Rossendorf, Germany

    Google Scholar 

  172. Shyy W, Thakur SS, Ouyang H, Liu J, Blosch E (1998) Computational Techniques for Complex Transport Phenomena. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  173. Sidilkover D (2002) Factorable Schemes for the equations of fluid flow. Applied Numerical Mathematics 41:423-436

    MATH  MathSciNet  Google Scholar 

  174. Smith GD (1985) Numerical Solution of Partial Differential Equations: Finite Difference Methods. Third edition, Clarendon Press, Oxford

    MATH  Google Scholar 

  175. Smolarkiewicz PK (1983) A simple positive definite advection scheme with small implicit diffusion. Mon Wea Rev 11:479-486

    Google Scholar 

  176. Spalding DB (1977) The calculation of free-convection phenomena in gas-liquid mixtures. ICHMT seminar 1976. In:Turbulent Buoyant Convection, Hemisphere, Washington, pp 569-586

    Google Scholar 

  177. Spalding DB (1980) Numerical computation of multiphase fluid flow and heat transfer. In: Taylor C, Morgan K (Eds) Recent Advances in Numerical Methods in Fluids, Pineridge Press, pp 139-167

    Google Scholar 

  178. Spalding DB (1980) Mathematical Methods in Nuclear Reactor Thermal Hydraulics. In: Lahey RT (ed) Proc of ANS Meeting on Nuclear Reactor Thermal Hydraulics, Saratoga NY, pp 1979-2023

    Google Scholar 

  179. Spalding DB (1981) IPSA 1981: New Developments and Computed Results. Report HTS/81/2, Imperial College of Science and Technology, London

    Google Scholar 

  180. Spalding DB (1985) Computer Simulation of Two-Phase Flows, with Special Reference to Nuclear-Reactor Systems. In: Lewis RW, Morgan K, Johnson JA, Smith WR (eds) Computational Techniques in Heat Transfer, pp 1-44

    Google Scholar 

  181. Strang G (1968) On the Construction and Comparison of Difference Schemes. SIAM J Numer Anal 5(3):506-517

    MATH  MathSciNet  Google Scholar 

  182. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995-1011

    MATH  MathSciNet  Google Scholar 

  183. Tamamidis P, Zhang G, Assanis DN (1996) Comparison of Pressure-Based and Artificial Compressibility Methods for Solving 3D Steady Incompressible Viscous Flows. J Comput Phys 124:1-13

    MATH  Google Scholar 

  184. The Duc N (2005) An Implicit Scheme for Incompressible Flow Computation with Artificial Compressibility Method. VNU Journal of Science, Mathematics-Physics, T-XXI (4):1-13

    Google Scholar 

  185. Thomas LH (1949) Elliptic Problems in Linear Differential Equations over a Network. Watson Sci Comput Lab Report, Columbia University, New York

    Google Scholar 

  186. Thuburn J (1993) Use of flux-limited scheme for vertical advection in a GCM. Q J R Meteorol Soc 119:469-487

    Google Scholar 

  187. Thuburn J (1995) Dissipation and Cascades to Small Scales in Numerical Models Using a Shape-Preserving Advection Scheme. Mon Wea Rev 123(6):1888-1903

    Google Scholar 

  188. Thuburn J (1996) Multidimensional Flux-Limited Advection Schemes. Journal of Computational Physics 123:74-83

    MATH  Google Scholar 

  189. Thuburn J (1997) TVD Schemes, Positive Schemes, and the Universal Limiter. Mon Wea Rev 125(8):1990-1995

    Google Scholar 

  190. Tomiyama A, Shimada N (2001) A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model. Journal of Pressure Vessel Technology-Trans ASME 123(4):510-516

    Google Scholar 

  191. van Doormal JP, Raithby GD (1984) Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer Heat Transfer 7:147-163

    Google Scholar 

  192. van Doormal JP, Raithby GD, McDonald BH (1987) The Segregated Approach to Predicting Viscous Compressible Fluid Flows. ASME J Turbomachinery 109:268-277

    Google Scholar 

  193. van Leer B (1974) Towards the Ultimate Conservation Difference Scheme II. Monotonicity and Conservation Combined in a Second Order Scheme. J Comput Phys 14(4):361-370

    Google Scholar 

  194. van Leer B (1977) Towards the Ultimate Conservation Difference Scheme IV. A New Approach to Numerical Convection. J Comput Phys 23(3):276-299

    Google Scholar 

  195. van Leer B (1979) Towards the ultimate conservative difference scheme, V. J Comp Phys 32:101-136

    Google Scholar 

  196. van Leer B (1982) Flux-vector splitting for the Euler equations. In: Lecture Notes in Physics, Springer, Berlin 170:507-512

    Google Scholar 

  197. van Leer B (1997) Godunov’s Method for Gas-Dynamics: Current Applications and Future Developments. J Comput Phys 132:1-2

    Google Scholar 

  198. van Leer B (2006) Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes. Communications in Computational Physics 1(2):192-206

    Google Scholar 

  199. van Santen H, Lathouwers D, Kleijn CR, van den Akker HEA (1996) Influence of segregation on the efficiency of finite volume methods for the incompressible Navier-Stokes equations. Presented at the 1996 ASME Fluids Engineering Division Summer Meeting, July 7-11, San Diego, California. In: Proceedings of the ASME Fluid Engineering Division Conference, FED-238(3):151-157

    Google Scholar 

  200. Vasquez SA, Ivanov VA (2000) A phase coupled method for solving multiphase problems on unstructured meshes. ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11-15. In: Proceedings of ASME FEDSM’00, paper FEDSM2000-11281, pp 1-6

    Google Scholar 

  201. Versteeg HK, Malalasekera W (1996) An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Harlow

    Google Scholar 

  202. Versteeg HK, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Prentice Hall, Harlow

    Google Scholar 

  203. Villadsen JV, Stewart WE (1967) Solution of boundary-value problems by orthogonal collocation. Chem Eng Sci 22:1483-1501

    Google Scholar 

  204. Villadsen J, Michelsen ML (1978) Solution of Differential Equations Models by Polynomial Approximation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  205. Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite-difference methods. J Comp Phys 14:159-179

    MathSciNet  Google Scholar 

  206. Waterson NP, Deconinck H (2007) Deign principles for bounded higher-order convection schemes-a unified approach. J Comput Phys 224:182-207

    MATH  MathSciNet  Google Scholar 

  207. Wesseling P (1992) An Introduction to Multigrid Methods. John Wiley & Sons, New York

    MATH  Google Scholar 

  208. White FM (1974) Viscous Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  209. Williams MMR, Loyalka SK (1991) Aerosol Science Theory and Practice:With Special Applications to the Nuclear Industry. Pergamon Press, Oxford

    Google Scholar 

  210. Wissink JG (2004) On unconditional conservation of kinetic energy by finite-difference discretizations of the linear and non-linear convection equation. Computers & Fluids 33:315-343

    MATH  MathSciNet  Google Scholar 

  211. Yanenko NN (1974) The Methods of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer-Verlag, Berlin

    Google Scholar 

  212. Yang HQ, Przekwas AJ (1992) A comparative study of advanced shock-capturing schemes applied to Burgers’ equation. J Comp Phys 102:139-159

    MATH  MathSciNet  Google Scholar 

  213. Zalesak ST (1979) Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids. J Comput Phys 31:335-362

    MATH  MathSciNet  Google Scholar 

  214. Zijlema M (1996) On the construction of a third-order accurate monotone convection scheme with applications to turbulent flows in general domains. Int J Numer Methods Fluids 22:619-641

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, H.A. (2009). Numerical Solution Methods. In: Chemical Reactor Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68622-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68622-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25197-2

  • Online ISBN: 978-3-540-68622-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics