The Phycodnaviridae: The Story of How Tiny Giants Rule the World

  • W. H. Wilson
  • James L. Van Etten
  • M. J. Allen
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 328)

The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarkova I V, Dunigan DD, Van Etten JL (2006) Virion-associated restriction endonucleases of chloroviruses. J Virol 80:8114–8123PubMedCrossRefGoogle Scholar
  2. Allen MJ, Wilson WH (2006) The coccolithovirus microarray: an array of uses. Brief Funct Genomic Proteomic 5:273–279PubMedCrossRefGoogle Scholar
  3. Allen MJ, Forster T, Schroeder DC, Hall M, Roy D, Ghazal P, Wilson WH (2006a) Locus-specific gene expression pattern suggests a unique propagation strategy for a giant algal virus. J Virol 80:7699–7705CrossRefGoogle Scholar
  4. Allen MJ, Schroeder DC, Donkin A, Crawfurd KJ, Wilson WH (2006b) Genome comparison of two Coccolithoviruses. Virology J 3:15CrossRefGoogle Scholar
  5. Allen MJ, Schroeder DC, Holden MTG, Wilson WH (2006c) Evolutionary history of the Coccolithoviridae. Mol Biol Evol 23:86–92CrossRefGoogle Scholar
  6. Allen MJ, Schroeder DC, Wilson WH (2006d) Preliminary characterization of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Arch Virology 151:525–535CrossRefGoogle Scholar
  7. Allen MJ, Martinez-Martinez J, Schroeder DC, Somerfield PJ, Wilson WH (2007) Use of micro-arrays to assess viral diversity: from genotype to phenotype. Environ Microbiol 9:971–982PubMedCrossRefGoogle Scholar
  8. Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706PubMedCrossRefGoogle Scholar
  9. Bamford DH, Burnett RM, Stuart DI (2002) Evolution of viral structure. Theor Popul Biol 61:461–470PubMedCrossRefGoogle Scholar
  10. Baumann S, Sander A, Gurnon JR, Yanai-Balser GM, Van Etten JL, Piotrowski M (2007) Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway. Virology 360:209–217PubMedCrossRefGoogle Scholar
  11. Benson SD, Bamford JK, Bamford DH, Burnett RM (2004) Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell 16:673–685PubMedCrossRefGoogle Scholar
  12. Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468PubMedCrossRefGoogle Scholar
  13. Blasco R, De La Dega I, Almazan F, Aguero M, Vinuela E (1989) Genetic variation of African swine fever virus: variable regions near the ends of the viral DNA. Virology 173:251–257PubMedCrossRefGoogle Scholar
  14. Bown PR (1998) Calcareous nannofossil biostratigraphy. Chapman and Hall, LondonGoogle Scholar
  15. Bratbak G, Egge JK, Heldal M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar EcolProgr 93:39–48Google Scholar
  16. Bratbak G, Wilson W, Heldal M (1996) Viral control of Emiliania huxleyi blooms? J Marine Syst 9:75–81CrossRefGoogle Scholar
  17. Braütigam M, Klein M, Knippers R, Müller DG (1995) Inheritance and meiotic elimination of a virus genome in the host Ectocarpus siliculosus (Phaeophyceae). J Phycol 31:823–827CrossRefGoogle Scholar
  18. Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res Oceans 99:7467–7482CrossRefGoogle Scholar
  19. Brussaard CPD (2004) Viral control of phytoplankton populations—a review. J Eukary Microbiol 51:125–138CrossRefGoogle Scholar
  20. Brussaard CPD, Kempers RS, Kop AJ, Riegman R, Heldal M (1996) Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquatic Microbial Ecol 10:105–113CrossRefGoogle Scholar
  21. Brussaard CPD, Noordeloos AAM, Sandaa RA, Heldal M, Bratbak G (2004a) Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319:280–291CrossRefGoogle Scholar
  22. Brussaard CPD, Short SM, Frederickson CM, Suttle CA (2004b) Isolation and phylogenetic analysis of novel viruses infecting the phytoplankton Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol 70:3700–3705CrossRefGoogle Scholar
  23. Brussaard CPD, Kuipers B, Veldhuis MJW (2005a) A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae 4:859–874CrossRefGoogle Scholar
  24. Brussaard CPD, Mari X, Bleijswijk JDLV, Veldhuis MJW (2005b) A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the micro-bial community. Harmful Algae 4:875–893CrossRefGoogle Scholar
  25. Bubeck JA, Pfitzner AJ (2005) Isolation and characterization of a new type of chlorovirus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. J Gen Virol 86:2871–2877PubMedCrossRefGoogle Scholar
  26. Burkill PH, Archer SD, Robinson C (2002) Dimethyl sulphide biogeochemistry within a coccol-ithophore bloom (DISCO): an overview. Deep Sea Research Part II: Topical Studies in Oceanography 49:2863–2885CrossRefGoogle Scholar
  27. Castberg T, Thyrhaug R, Larsen A, Sandaa R-A, Heldal M, Van Etten JL, Bratbak G (2002) Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta). J Phycol 38:767–774CrossRefGoogle Scholar
  28. Chan SH, Zhu Z, Van Etten JL, Xu SY (2004) Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt.CviPII in random DNA amplification. Nucleic Acids Res 32:6187–6199PubMedCrossRefGoogle Scholar
  29. Chan SH, Zhu Z, Dunigan DD, Van Etten JL, Xu SY (2006) Cloning of Nt.CviQII nicking endo-nuclease and its cognate methyltransferase: M.CviQII methylates AG sequences. Prot Express Purifi 49:138–150CrossRefGoogle Scholar
  30. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  31. Chen F, Suttle CA (1995) Amplification of DNA-polymerase gene fragments from viruses infecting microalgae. Appl Environ Microbiol 61:1274–1278PubMedGoogle Scholar
  32. Chen F, Suttle CA, Short SM (1996) Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl Environ Microbiol 62:2869–2874PubMedGoogle Scholar
  33. Chrétiennot-Dinet MJ, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC (1995) A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 34:285–292Google Scholar
  34. Chuchird N, Nishida K, Kawasaki T, Fujie M, Usami S, Yamada T (2002) A variable region on the chlorovirus CVK2 genome contains five copies of the gene for Vp260, a viral glycoprotein. Virology 295:289–298PubMedCrossRefGoogle Scholar
  35. Clokie MRJ, Mann NH (2006) Marine cyanophages and light. Environ Microbiol 8:2074–2082PubMedCrossRefGoogle Scholar
  36. Cottrell MT, Suttle CA (1991) Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar Ecol Progr 78:1–9CrossRefGoogle Scholar
  37. Cottrell MT, Suttle CA (1995a) Dynamics of a lytic virus infecting the photosynthetic marine ico-flagellate Micromonas pusilla. Limnol Oceanography 40:730–739CrossRefGoogle Scholar
  38. Cottrell MT, Suttle CA (1995b) Genetic diversity of algal viruses which lyse the photosynthetic picoflagellate Micromonas pusilla (Prasinophyceae). Appl Environ Microbiol 61:3088–3091Google Scholar
  39. Crick FH, Watson JD (1956) Structure of small viruses. Nature 177:473–475PubMedCrossRefGoogle Scholar
  40. Dahl E, Bagoien E, Edvardsen B, Stenseth NC (2005) The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J Sea Res 54:15–24CrossRefGoogle Scholar
  41. DeAngelis PL, Jing W, Graves MV, Burbank DE, Van Etten JL (1997) Hyaluronan synthase of chlorella virus PBCV-1. Science 278:1800–1803PubMedCrossRefGoogle Scholar
  42. Delaroque N, Maier I, Knippers R, Muller DG (1999) Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). J Gen Virol 80:1367–1370PubMedGoogle Scholar
  43. Delaroque N, Boland W, Muller DG, Knippers R (2003) Comparisons of two large phaeoviral genomes and evolutionary implications. J Mol Evol 57:613–622PubMedCrossRefGoogle Scholar
  44. Delaroque N, Muller DG, Bothe G, Pohl T, Knippers R, Boland W (2001) The complete DNA sequence of the Ectocarpus siliculosus virus EsV-1 genome. Virology 287:112–132PubMedCrossRefGoogle Scholar
  45. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Nat Acad Sci U S A 103:11647–11652CrossRefGoogle Scholar
  46. Diez B, Pedros-Alio C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941PubMedCrossRefGoogle Scholar
  47. Dundas I, Johannessen OM, Berge G, Heimdal B (1989) Toxic algal bloom in Scandinavian waters, May–June 1988. Oceanography 2:9–14Google Scholar
  48. Dunigan DD, Fitzgerald LA, Van Etten JL (2006) Phycodnaviruses: a peek at genetic diversity. Virus Res 117:119–132PubMedCrossRefGoogle Scholar
  49. Eikrem W, Throndsen J (1990) The ultrastructure of Bathycoccus gen-nov and Bathycoccus pra-sinos sp-nov, a nonmotile picoplanktonic alga (Chlorophyta, Prasinophyceae) from the Mediterranean and Atlantic. Phycologia 29:344–350Google Scholar
  50. Elderfield H (2002) Climate change: carbonate mysteries. Science 296:1618–1621PubMedCrossRefGoogle Scholar
  51. Eriksson M, Myllyharju J, Tu H, Hellman M, Kivirikko KI (1999) Evidence for 4-hydoxyproline in viral proteins: characterization of a viral prolyl 4 hydroxylase and its peptide substrates. J Biol Chem 274:22131–22134PubMedCrossRefGoogle Scholar
  52. Estep KW, MacIntyre F (1989) Taxonomy, life cycle, distribution and dasmotrophy of Chrysochromulina : a theory accounting for scales, haptonema, muciferous bodies and toxicity. Mar Ecol Progr 57:11–21CrossRefGoogle Scholar
  53. Evans C, Archer SD, Jacquet S, Wilson WH (2003) Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquatic Microbial Ecol 30:207–219CrossRefGoogle Scholar
  54. Evans C, Kadner S V, Darroch LJ, Wilson WH, Liss PS, Malin G (2007) The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol Oceanogr 52:1036–1045Google Scholar
  55. Figueroa RI, Rengefors K (2006) Life cycle and sexuality of the freshwater raphidophyte Gonyostomum semen (Raphidophyceae). J Phycol 42:859–871CrossRefGoogle Scholar
  56. Filee J, Forterre P, Laurent J (2003) The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Res Microbiol 154:237–243PubMedCrossRefGoogle Scholar
  57. Fischer D, Eisenberg D (1999) Finding families for genomic ORFans. Bioinformatics 15:759–762PubMedCrossRefGoogle Scholar
  58. Fitzgerald LA, Graves MV, Li X, Feldblyum T, Hartigan J, Van Etten JL (2007a) Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology 358:459–471CrossRefGoogle Scholar
  59. Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL (2007b) Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology 358:472–484CrossRefGoogle Scholar
  60. Fitzgerald LA, Graves MV, Li X, Hartigan J, Pfitzner AJ, Hoffart E, Van Etten JL (2007c) Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 362:350–361CrossRefGoogle Scholar
  61. Fortune JM, Lavrukhin OV, Gurnon JR, Van Etten JL, Lloyd RS, Osheroff N (2001) Topoisomerase II from chlorella virus PBCV-1 has an exceptionally high DNA cleavage activity. J Biol Chem 276:24401–24408PubMedCrossRefGoogle Scholar
  62. Frohns F, Käsmann A, Kramer D, Schäfer B, Mehmel M, Kang M, Van Etten JL, Gazzarrini S, Moroni A, Thiel G (2006) Potassium ion channels of chlorella viruses cause rapid depolarization of host cells during infection. J Virol 80:2437–2444PubMedCrossRefGoogle Scholar
  63. Fruscione F, Sturla L, Duncan, G, Van Etten JL, Valbuzzi, P, De Flora A, Di Zanni E, Tonetti M (2008) Differential role of NADP + and NADPH in the activity and structure of GDP-D-man-nose 4,6-dehydratase from two chlorella viruses. J. Biol Chem 283:184–193PubMedCrossRefGoogle Scholar
  64. Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaierl K, Le Gall F, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquatic Microbial Ecol 43:79–93CrossRefGoogle Scholar
  65. Gazzarrini S, Kang M, Van Etten JL, Tayefeh S, Kast SM, DiFrancesco D, Thiel G, Moroni A (2004) Long-distance interactions within the potassium channel pore are revealed by molecular diversity of viral proteins. J Biol Chem 279:28443–28449PubMedCrossRefGoogle Scholar
  66. Gazzarrini S, Kang M, Epimashko S, Van Etten JL, Dainty J, Theil G, Moroni A (2006) Chlorella virus MT325 encodes water and potassium channels that interact synergistically. Proc Natl Acad Sci U S A 103:5355–5360PubMedCrossRefGoogle Scholar
  67. Graves MV, Burbank DE, Roth R, Heuser J, DeAngelis PL, Van Etten JL (1999) Hyaluronan synthesis in virus PBCV-1 infected chlorella-like green algae. Virology 257:15–23PubMedCrossRefGoogle Scholar
  68. Graves M V, Bernadt CT, Cerny R, Van Etten JL (2001) Molecular and genetic evidence for a virus-encoded glycosyltransferase involved in protein glycosylation. Virology 285:332–345PubMedCrossRefGoogle Scholar
  69. Graziani S, Xia Y, Gurnon JR, Van Etten JL, Leduc D, Skouloubris S, Myllykallio, Hiebl U (2004) Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria chlorella virus-1. J Biol Chem 279:54340–54347PubMedCrossRefGoogle Scholar
  70. Green JC, Pienaar RN (1977) The taxonomy of the order Isochrysidales (Prymnesiophyceae) with special reference to the genera Isochrysis Parke, Dicrateria Parke and Imantonia Reynolds. J Mar Biol Assoc UK 57:7–17Google Scholar
  71. Hakansson K, Wigley DB (1998) Structure of a complex between a cap analogue and mRNA guanylyl transferase demonstrates the structural chemistry of RNA capping. Proc Natl Acad Sci USA 95:1505–1510PubMedCrossRefGoogle Scholar
  72. Hakansson K, Doherty AJ, Shuman S, Wigley DB (1997) X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89:543–553CrossRefGoogle Scholar
  73. Han G, Gable K, Yan L, Allen MJ, Wilson WH, Moitra P, Harmon JM, Dunn TM (2006) Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem 281:39935–39942PubMedCrossRefGoogle Scholar
  74. Hanada K, Nishijima M (2003) Purification of mammalian serine palmitoyltransferase, a hetero-subunit enzyme for sphingolipid biosynthesis, by affinity-peptide chromatography. Methods Mol Biol 228:163–174PubMedGoogle Scholar
  75. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508PubMedCrossRefGoogle Scholar
  76. Henry EC, Meints RH (1992) A persistent virus-infection in Feldmannia (Phaeophyceae). J Phycol 28:517–526CrossRefGoogle Scholar
  77. Hiroishi S, Okada H, Imai I, Yoshida T (2005) High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae ) to cultured fish. Harmful Algae 4:783–787CrossRefGoogle Scholar
  78. Ho CK, Van Etten JL, Shuman S (1996) Expression and characterization of an RNA capping enzyme encoded by chlorella virus PBCV-1. J Virology 70:6658–6664PubMedGoogle Scholar
  79. Ho CK, Van Etten JL, Shuman S (1997) Characterization of an ATP dependent DNA ligase encoded by chlorella virus PBCV-1. J Virology 71:1931–1937PubMedGoogle Scholar
  80. Holligan PM, Viollier M, Harbour DS, Camus P, Champagnephilippe M (1983) Satellite and ship studies of coccolithophore production along a continental-shelf edge. Nature 304:339–342CrossRefGoogle Scholar
  81. Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, Vanderwal P (1993) A biogeo-chemical study of the Coccolithophore, Emiliania huxleyi, in the North-Atlantic. Global Biogeochem Cycles 7:879–900CrossRefGoogle Scholar
  82. Honjo T (1993) Overview on bloom dynamics and physiological ecology of Heterosigma akash-iwo. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 33–41Google Scholar
  83. Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryo-tic DNA viruses. J Virol 75:11720–11734PubMedCrossRefGoogle Scholar
  84. Iyer LM, Balaji S, Koonin EV, Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–184PubMedCrossRefGoogle Scholar
  85. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927CrossRefGoogle Scholar
  86. Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, Bratbak G (2002) Flow cytomet-ric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquatic Microbial Ecol 27:111–124CrossRefGoogle Scholar
  87. Kai AKL, Cheung YK, Yeung RKK, Wong JTY (2006) Development of single-cell PCR methods for the Raphidophyceae. Harmful Algae 5:649–657CrossRefGoogle Scholar
  88. Kaiser A, Vollmert M, Tholl D, Graves MV, Xing W, Lisec AD, Gurnon JR, Nickerson KW, Van Etten JL (1999) Chlorella virus PBCV-1 encodes a functional Homospermidine synthase. Virology 263:254–262PubMedCrossRefGoogle Scholar
  89. Kang M, Moroni A, Gazzarrini S, DiFrancesco D, Thiel G, Severino M, Van Etten JL (2004) Small potassium ion channel proteins encoded by chlorella viruses. Proc Natl Acad Sci U S A 101:5318–5324PubMedCrossRefGoogle Scholar
  90. Kang M, Dunigan DD, Van Etten JL (2005) Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae. Mol Plant Pathol 6:213–224CrossRefPubMedGoogle Scholar
  91. Kawakami H, Kawakami N (1978) Behavior of a virus in a symbiotic system, Paramecium bursa-ria -zoochlorella. J Protozool 25:217–225Google Scholar
  92. Kawasaki T, Tanaka M, Fujie M, Usami S, Sakai K, Yamada T (2002) Chitin synthesis in chloro-virus CVK2-infected chlorella cells. Virology 302:123–131PubMedCrossRefGoogle Scholar
  93. Khan S, Arakawa O, Onoue Y (1995) Effects of physiological factors on morphology and motility of Chattonella antiqua (Raphidophyceae). Botanica Marina 38:347–353Google Scholar
  94. Khan S, Arakawa O, Onoue Y (1997) Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquaculture Res 28:9–14CrossRefGoogle Scholar
  95. Kochneva G, Kolosova I, Maksyutova T, Ryabchikova E, Shchelkunov S (2005) Effects of deletions of kelch-like genes on cowpox virus biological properties. Arch Virol 150:1857–1870PubMedCrossRefGoogle Scholar
  96. Kropinski AM, Sibbald MJ (1999) Transfer RNA genes and their significance to codon usage in the Pseudomonas aeruginosa lamboid bacteriophage D3. Can J Microbiol 45:791–796PubMedCrossRefGoogle Scholar
  97. Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassmann P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46Google Scholar
  98. Landstein D, Burbank D, Nietfeldt JW, Van Etten JL (1995) Large deletions in antigenic variants of the chlorella virus PBCV-1. Virology 214:413–420PubMedCrossRefGoogle Scholar
  99. Landstein D, Graves MV, Burbank DE, DeAngelis P, Van Etten JL (1998) Chlorella virus PBCV-1 encodes functional glutamine: fructose-6-phosphate amidotransferase and UDP-glucose dehy-drogenase enzymes. Virology 250:388–396PubMedCrossRefGoogle Scholar
  100. Lanka STJ, Klein M, Ramsperger U, Müller DG, Knippers R (1993) Genome structure of a virus infecting the marine brown alga Ectocarpus siliculosus. Virology 193:802–811PubMedCrossRefGoogle Scholar
  101. Lavrukhin OV, Fortune JM, Wood TG, Burbank DE, Van Etten JL, Osheroff N, Lloyd RS (2000) Topoisomerase II from chlorella virus PBCV-1. Characterization of the smallest known type II topoisomerase. J Biol Chem 275:6915–6921PubMedCrossRefGoogle Scholar
  102. Leadbeater BSC (1972) Identification, by means of electron microscopy, of flagellate nanoplank-ton from the coast of Norway. Sarsia 49:107–124Google Scholar
  103. Lee AM, Ivey RG, Henry EC, Meints RH (1995) Characterization of a repetitive DNA element in a brown algal virus. Virology 212:474–480PubMedCrossRefGoogle Scholar
  104. Li WKW (1994) Primary production of Prochlorophytes, Cyanobacteria, and eukaryotic ultra-phytoplankton—measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175Google Scholar
  105. Li Y, Lu Z, Sun L, Ropp S, Kutish GF, Rock DL, Van Etten JL (1997) Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology 237:360–377PubMedCrossRefGoogle Scholar
  106. Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulfide and Phaeocystis — a review. J Marine Sys 5:41–53CrossRefGoogle Scholar
  107. Maier I, Müller DG, Katsaros C (2002) Entry of the DNA virus, Ectocarpus fasciculatus virus type 1 (Phycodnaviridae), into host cell cytosol and nucleus. Phycol Res 50:227–231CrossRefGoogle Scholar
  108. Malin G (1997) Biological oceanography—sulphur, climate and the microbial maze. Nature 387:857–859CrossRefGoogle Scholar
  109. Malin G, Wilson WH, Bratbak G, Liss PS, Mann NH (1998) Elevated production of dimethyl-sulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol Oceanogr 43:1389–1393Google Scholar
  110. Manton I, Leadbeater BSC (1974) Fine structural observations on six species of Chrysochromulina from wild Danish marine nanoplankton, including a description of C. campanulifera sp. nov. and a preliminary summary of the nanoplankton as a whole. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 20:1–26Google Scholar
  111. Manzur KL, Farooq A, Zeng L, Plotnikova O, Koch AW, Sachchidanand, Zhou MM (2003) A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nature Struct Biol 10:187–196PubMedCrossRefGoogle Scholar
  112. Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A (2004) Glycosyltransferases encoded by viruses. J Gen Virol 85:2741–2754PubMedCrossRefGoogle Scholar
  113. Mayer JA, Taylor FJR (1979) A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281:299–301CrossRefGoogle Scholar
  114. McClendon AK, Dickey JS, Osheroff N (2006) Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 45:11674–11680PubMedCrossRefGoogle Scholar
  115. McHugh DJ (1991) Worldwide distribution of commercial resources of seaweeds including Geldium. Hydrobiologia 221:19–29CrossRefGoogle Scholar
  116. Mehmel M, Rothermel M, Meckel T, Van Etten JL, Moroni A, Thiel G (2003) Possible function for virus encoded K + channel Kcv in the replication of chlorella virus PBCV-1. FEBS Lett 552:7–11PubMedCrossRefGoogle Scholar
  117. Meints RH, Van Etten JL, Kuczmarski D, Lee K, Ang B (1981) Viral-infection of the symbiotic chlorella-like alga present in Hydra viridis. Virology 113:698–703PubMedCrossRefGoogle Scholar
  118. Meints RH, Lee K, Burbank DE, Van Etten JL (1984) Infection of a chlorella-like alga with the virus, PBCV-1: Ultrastructural studies. Virology 138:341–346PubMedCrossRefGoogle Scholar
  119. Meints RH, Lee K, Van Etten JL (1986) Assembly site of the virus PBCV-1 in a chlorella-like green alga: ultrastructural studies. Virology 154:240–245PubMedCrossRefGoogle Scholar
  120. Meints RH, Burbank DE, Van Etten JL, Lamport DTA (1988) Properties of the Chlorella receptor for the virus PBCV-1. Virology 164:15–21PubMedCrossRefGoogle Scholar
  121. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610CrossRefGoogle Scholar
  122. Morehead TA, Gurnon JR, Adams B, Nickerson KW, Fitzgerald LA, Van Etten JL (2002) Ornithine decarboxylase encoded by chlorella virus PBCV-1. Virology 301:165–175PubMedCrossRefGoogle Scholar
  123. Müller DG (1991) Mendelian segregation of a virus genome during host meiosis in the marine brown alga Ectocarpus siliculosus. J Plant Physiol 137:739–743Google Scholar
  124. Müller DG (1996) Host-virus interactions in marine brown algae. Hydrobiologia 327:21–28CrossRefGoogle Scholar
  125. Müller DG, Kawai H, Stache B, Lanka S (1990) A virus-infection in the marine brown alga Ectocarpus siliculosus (Phaeophyceae ). Bot Acta 103:72–82Google Scholar
  126. Müller DG, Stache B (1992) Worldwide occurrence of virus-infections in filamentous marine brown-algae. Helgolander Meeresunters 46:1–8CrossRefGoogle Scholar
  127. Müller DG, Kapp M, Knippers R (1998) Viruses in marine brown algae. In: Advances in virus research, Vol. 50. Academic, San Diego, pp 49–67CrossRefGoogle Scholar
  128. Muzzarelli R, Jeuniaux C, Gooday GW (eds) (1986) Chitin in nature and technology. Plenum Press, New YorkGoogle Scholar
  129. Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, Liebl U (2002) An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105–107PubMedCrossRefGoogle Scholar
  130. Nagasaki K, Yamaguchi M (1997) Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae ). Aquatic Microbial Ecol 13:135–140CrossRefGoogle Scholar
  131. Nagasaki K, Yamaguchi M (1998a) Effect of temperature on the algicidal activity and the stability of HaV ( Heterosigma akashiwo virus). Aquatic Microbial Ecol 15:211–216CrossRefGoogle Scholar
  132. Nagasaki K, Yamaguchi M (1998b) Intra-species host specificity of HaV ( Heterosigma akashiwo virus) clones. Aquatic Microbial Ecol 14:109–112CrossRefGoogle Scholar
  133. Nagasaki K, Tarutani K, Yamaguchi M (1999a) Cluster analysis on algicidal activity of HaV clones and virus sensitivity of Heterosigma akashiwo (Raphidophyceae ). J Plankton Res 21:2219–2226CrossRefGoogle Scholar
  134. Nagasaki K, Tarutani K, Yamaguchi M (1999b) Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control. Appl Environ Microbiol 65:898–902Google Scholar
  135. Nagasaki K, Tomaru Y, Katanozaka N, Shirai Y, Nishida K, Itakura S, Yamaguchi M (2004) Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera. Appl Environ Microbiol 70:704–711PubMedCrossRefGoogle Scholar
  136. Nagasaki K, Shirai Y, Tomaru Y, Nishida K, Pietrokovski S (2005) Algal viruses with distinct intraspecies host specificities include identical intein elements. Appl Environ Microbiol 71:3599–3607PubMedCrossRefGoogle Scholar
  137. Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, Van Etten JL, Rossmann MG (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci U S A 99:14758–14763PubMedCrossRefGoogle Scholar
  138. Nelson M, Burbank DE, Van Etten JL (1998) Chlorella viruses encode multiple DNA methyltrans-ferases. Biol Chem 379:423–428PubMedCrossRefGoogle Scholar
  139. Neupartl M, Meyer C, Woll I, Frohns F, Kang M, Van Etten JL, Kramer D, Hertel B, Moroni A, Thiel G (2008) Chlorella viruses evoke a rapid release of K + from host cells during early phase of infection. Virology 372:340–348PubMedCrossRefGoogle Scholar
  140. Nishida K, Suzuki S, Kimura Y, Nomura N, Fujie M, Yamada T (1998) Group I introns found in chlorella viruses: Biological implications. Virology 242:319–326PubMedCrossRefGoogle Scholar
  141. Nishida K, Kimura Y, Kawasaki T, Fujie M, Yamada T (1999) Genetic variation of chlorella viruses: variable regions localized on the CVK2 genomic DNA. Virology 255:376–384PubMedCrossRefGoogle Scholar
  142. Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the western English channel. Appl Environ Microbiol 70:4064–4072PubMedCrossRefGoogle Scholar
  143. Not F, Massana R, Latasa M, Marie D, Colson C, Eikrem W, Pedros-Alio C, Vaulot D, Simon N (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol Oceanogr 50:1677–1686Google Scholar
  144. Odell M, Malinina L, Sriskanda V, Teplova M, Shuman S (2003) Analysis of the DNA joining repertoire of chlorella virus DNA ligase and a new crystal structure of the ligase-adenylate intermediate. Nucleic Acids Res 31:5090–5100PubMedCrossRefGoogle Scholar
  145. O'Kelly CJ, Sieracki ME, Thier EC, Hobson IC (2003) A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in the West Neck Bay, Long Island, New York. J Phycol 39:850–854Google Scholar
  146. Onimatsu H, Suganuma K, Uenoyama S, Yamada T (2006) C-terminal repetitive motifs in Vp130 present at the unique vertex of the chlorovirus capsid are essential for binding to the host chlo-rella cell wall. Virology 353:432–442CrossRefGoogle Scholar
  147. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710PubMedCrossRefGoogle Scholar
  148. Parke M, Manton I, Clarke B (1959) Studies on marine flagellates. V. Morphology and micro-anatomy of Cyrysochromulina strobilus sp. nov. J Marine Biol Assoc UK 38:169–188CrossRefGoogle Scholar
  149. Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol 40:1079–1088CrossRefGoogle Scholar
  150. Pires de Miranda M, Reading PC, Tscharke DC, Murphy BJ, Smith GL (2003) The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84:2459–2471PubMedCrossRefGoogle Scholar
  151. Plugge B, Gazzarrini S, Nelson M, Cerana R, Van Etten JL, Derst C, DiFrancesco D, Moroni A, Thiel G (2000) A potassium channel protein encoded by chlorella virus PBCV-1. Science 287:1641–1644PubMedCrossRefGoogle Scholar
  152. Que Q, Li Y, Wang IN, Lane LC, Chaney WG, Van Etten JL (1994) Protein glycosylation and myristylation in chlorella virus PBCV-1 and it antigenic variants. Virology 203:320–327PubMedCrossRefGoogle Scholar
  153. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2 megabase genome sequence of mimivirus. Science 306:1344–1350PubMedCrossRefGoogle Scholar
  154. Reisser W (ed) (1992) Algae and symbioses. Biopress, Bristol, UKGoogle Scholar
  155. Rodriguez-Trelles F, Tarrio R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76PubMedCrossRefGoogle Scholar
  156. Rohozinski J, Girton LE, Van Etten JL (1989) Chlorella viruses contain linear nonpermuted double strand DNA genomes with covalently closed hairpin ends. Virology 168:363–369PubMedCrossRefGoogle Scholar
  157. Sahlsten E (1998) Seasonal abundance in Skagerrak-Kattegat coastal waters and host specificity of viruses infecting the marine photosynthetic flagellate Micromonas pusilla. Aquatic Microbial Ecol 16:103–108CrossRefGoogle Scholar
  158. Sahlsten E, Karlson B (1998) Vertical distribution of virus-like particles (VLP) and viruses infecting Micromonas pusilla during late summer in the southeastern Skagerrak, North Atlantic. J Plankton Res 20:2207–2212CrossRefGoogle Scholar
  159. Sandaa RA, Heldal M, Castberg T, Thyrhaug R, Bratbak G (2001) Isolation and characterization of two viruses with large genome sizes infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290:272–280PubMedCrossRefGoogle Scholar
  160. Schroeder DC, Oke J, Malin G, Wilson WH (2002) Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch Virology 147:1685–1698CrossRefGoogle Scholar
  161. Schroeder DC, Oke J, Hall M, Malin G, Wilson WH (2003) Virus succession observed during an Emiliania huxleyi bloom. Appl Environ Microbiol 69:2484–2490PubMedCrossRefGoogle Scholar
  162. Schuster AM, Girton L, Burbank DE, Van Etten JL (1986) Infection of a chlorella-like alga with the virus PBCV-1: transcriptional studies. Virology 148:181–189PubMedCrossRefGoogle Scholar
  163. Shah R, Coleman CS, Mir K, Baldwin J, Van Etten JL, Grishin NV, Pegg AE, Stanley BA, Phillips MA (2004) Paramecium bursaria chlorella virus-1 encodes an unusual arginine decarboxylase that is a close homolog of eukaryotic ornithine decarboxylases. J Biol Chem 279:35760–35767PubMedCrossRefGoogle Scholar
  164. Shchelkunov SN, Totmenin AV (1995) Two types of deletions in orthopoxvirus genomes. Virus Genes 9:231–245PubMedCrossRefGoogle Scholar
  165. Shihra I, Krauss RW (1965) Chlorella physiology and taxonomy of forty-one isolates. College Park, MD, University of Maryland PressGoogle Scholar
  166. Short SM, Suttle CA (2002) Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 68:1290–1296PubMedCrossRefGoogle Scholar
  167. Simpson AA, Nandhagopal N, Van Etten JL, Rossmann MG (2003) Structural analyses of Phycodnaviridae and Iridoviridae. Acta Crystallogr D Biol Crystallogr 59:2053–2059PubMedCrossRefGoogle Scholar
  168. Songsri P, Hamazaki T, Ishikawa Y, Yamada T (1995) Large deletions in the genome of chlorella virus CVK1. Virology 214:405–412PubMedCrossRefGoogle Scholar
  169. Stoltz DB (1971) The structure of icosahedral cytoplasmic deoxyriboviruses. J Ultrastruct Res 37:219–239PubMedCrossRefGoogle Scholar
  170. Strasser P, Zhang YP, Rohozinski J, Van Etten JL (1991) The termini of the chlorella virus PBCV-1 genome are identical 2.2-kbp inverted repeats. Virology 180:763–769PubMedCrossRefGoogle Scholar
  171. Sugimoto I, Onimatsu H, Fujie M, Usami S, Yamada T (2004) vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2. FEBS Lett 559:51–56PubMedCrossRefGoogle Scholar
  172. Sun L, Li Y, McCullough AK, Wood TG, Lloyd RS, Adams B, Gurnon JR, Van Etten JL (2000) Intron conservation in a UV-specific DNA repair gene encoded by chlorella viruses. J Mol Evol 50:82–92PubMedGoogle Scholar
  173. Suttle CA (2000a) Cyanophages and their role in the ecology of cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Boston, pp 563–589Google Scholar
  174. Suttle CA (2000b) Ecological, evolutionary and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. In: Hurst CJ (ed) Viral ecology. Academic, pp 247–296Google Scholar
  175. Suttle CA, Chan AM (1995) Viruses Infecting the marine Prymnesiophyte Chrysochromulina spp — isolation, preliminary characterization and natural-abundance. Mar Ecolo Progr 118:275–282CrossRefGoogle Scholar
  176. Tai V, Lawrence JE, Lang AS, Chan AM, Culley AI, Suttle CA (2003) Characterization of HaRNAV, a single-stranded RNA virus causing lysis of Heterosigma akashiwo (Raphidophyceae). J Phycol 39:343–352Google Scholar
  177. Tarutani K, Nagasaki K, Yamaguchi M (2000) Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl Environ Microbiol 66:4916–4920PubMedCrossRefGoogle Scholar
  178. Tarutani K, Nagasaki K, Yamaguchi M (2006) Virus adsorption process determines virus susceptibility in Heterosigma akashiwo (Raphidophyceae). Aquat Microbial Ecol 42:209–213CrossRefGoogle Scholar
  179. Tayefeh S, Kloss T, Thiel G, Hertel B, Moroni A, Kast SM (2007) Molecular dynamics simulation of the cytosolic mouth in Kcv-type potassium channels. Biochemistry 46:4826–4839PubMedCrossRefGoogle Scholar
  180. Tett P (1990) The photic zone. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 59–87Google Scholar
  181. Throndsen J (1996) Note on the taxonomy of Heterosigma akashiwo (Raphidophyceae). Phycologia 35:367Google Scholar
  182. Tomaru Y, Tarutani K, Yamaguchi M, Nagasaki K (2004) Quantitative and qualitative impacts of viral infection on a Heterosigma akashiwo (Raphidophyceae) bloom in Hiroshima Bay, Japan. Aquatic Microbial Ecol 34:227–238CrossRefGoogle Scholar
  183. Tonetti M, Zanardi D, Gurnon JR, Fruscione F, Armirotti A, Damonte G, Sturla L, De Flora A, Van Etten JL (2003) Paramecium bursaria chlorella virus 1 encodes two enzymes involved in the biosynthesis of GDP-L-fucose and GDP-D-rhamnose. J Biol Chem 278:21559–21565PubMedCrossRefGoogle Scholar
  184. Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL (2002) The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061PubMedCrossRefGoogle Scholar
  185. Turner PC, Moyer RW (1990) The molecular pathogenesis of poxviruses. Curr Top Microbiol Immunol 163:125–151PubMedGoogle Scholar
  186. Van Etten JL (2003) Unusual life style of giant chlorella viruses. Annu Rev Genet 37:153–195PubMedCrossRefGoogle Scholar
  187. Van Etten JL, Meints RH (1999) Giant viruses infecting algae. Annu Rev Microbiol 53:447–494PubMedCrossRefGoogle Scholar
  188. Van Etten JL, Meints RH, Burbank DE, Kuczmarski D, Cuppels DA, Lane LC (1981) Isolation and characterization of a virus from the intracellular green-alga symbiotic with Hydra viridis. Virology 113:704–711PubMedCrossRefGoogle Scholar
  189. Van Etten JL, Meints RH, Kuczmarski D, Burbank DE, Lee K (1982) Viruses of symbiotic chlo-rella-like algae isolated from Paramecium bursaria and Hydra viridis. Proc Natl Acad Sci U S A 79:3867–3871PubMedCrossRefGoogle Scholar
  190. Van Etten JL, Burbank DE, Kuczmarski D, Meints RH (1983a) Virus-infection of culturable chlorella-like algae and development of a plaque-assay. Science 219:994–996CrossRefGoogle Scholar
  191. Van Etten JL, Burbank DE, Xia Y, Meints RH (1983b) Growth cycle of a virus, PBCV-1, that infects chlorella-like algae. Virology 126:117–125CrossRefGoogle Scholar
  192. Van Etten JL, Burbank DE, Joshi J, Meints RH (1984) DNA synthesis in a chlorella-like alga following infection with the virus PBCV-1. Virology 134:443–449PubMedCrossRefGoogle Scholar
  193. Van Etten JL, Schuster AM, Girton L, Burbank DE, Swinton D, Hattman S (1985) DNA methyla-tion of viruses infecting a eukaryotic chlorella-like alga. Nucleic Acids Res 13:3471–3478PubMedCrossRefGoogle Scholar
  194. Van Etten JL, Burbank DE, Meints RH (1986) Replication of the algal virus PBCV-1 in UV-irradi-ated chlorella. Intervirology 26:115–120PubMedCrossRefGoogle Scholar
  195. Van Etten JL, Lane LC, Meints RH (1991) Viruses and virus-like particles of eukaryotic algae. Microbiol Rev 55:586–620PubMedGoogle Scholar
  196. Van Etten JL, Graves MV, Muller DG, Boland W, Delaroque N (2002) Phycodnaviridae—large DNA algal viruses. Arch Virol 147:1479–1516PubMedCrossRefGoogle Scholar
  197. Veldhuis MJW, Wassmann P (2005) Bloom dynamics and biological control of a high biomass HAB species in European coastal waters: a Phaeocystis case study. Harmful Algae 4:805–809CrossRefGoogle Scholar
  198. Verity P, Brussaard C, Nejstgaard J, van Leeuwe M, Lancelot C, Medlin L (2007) Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. Biogeochemistry 83:311–330CrossRefGoogle Scholar
  199. Villarreal LP, DeFilippis VR (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 74:7079–7084PubMedCrossRefGoogle Scholar
  200. Wang IN, Li Y, Que Q, Bhattacharya M, Lane LC, Chaney WG, Van Etten JL (1993) Evidence for virus-encoded glycosylation specificity. Proc Natl Acad Sci U S A 90:3840–3844PubMedCrossRefGoogle Scholar
  201. Westbroek P, Brown CW, Vanbleijswijk J, Brownlee C, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, Vanderwal P, Young J (1993) A model system approach to biological climate forcing—the example of Emiliania huxleyi. Glob Planet Change 8:27–46CrossRefGoogle Scholar
  202. Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, Malin G (2002) Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Marine Biol Assoc UK 82:369–377CrossRefGoogle Scholar
  203. Wilson WH, Schroeder DC, Allen MJ, Holden MT, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P (2005a) Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309:1090–1092CrossRefGoogle Scholar
  204. Wilson WH, Van Etten JL, Schroeder DS, Nagasaki K, Brussaard C, Delaroque N, Bratbak C, Suttle C (2005b) Family: Phycodnaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Dusselberger U, Ball LA (eds) Virus taxonomy, VIIIth ICTV report. Elsevier/Academic, London, pp 163–175Google Scholar
  205. Wolf S, Maier I, Katsaros C, Müller DG (1998) Virus assembly in Hincksia hincksiae (Ecocarpales, Phaeophyceae). An electron and fluorescence microscopic study. Protoplasma 203:153–167CrossRefGoogle Scholar
  206. Wilson WH, Schroeder DC, Ho J, Canty M (2006) Phylogenetic analysis of PgV-102P, a new virus from the English Channel that infects Phaeocystis globosa. J Marine Biol Assoc UK 86:485–490CrossRefGoogle Scholar
  207. Wolf S, Müller DG, Maier I (2000) Assembly of a large icosahedral DNA virus, MclaV-1, in the marine alga Myriotrichia clavaeformis (Dictyosiphonales, Phaeophyceae). Eur J Phycol 35:163–171CrossRefGoogle Scholar
  208. Worden AZ (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquatic Microbial Ecol 43:165–175CrossRefGoogle Scholar
  209. Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophy-toplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179Google Scholar
  210. Wrigley NG (1969) An electron microscope study of the structure of Serocesthis iridescent virus. J Gen Virol 5:123–134PubMedCrossRefGoogle Scholar
  211. Xia Y, Burbank DE, Uher L, Rabussay D, Van Etten JL (1986) Restriction endonuclease activity induced by PBCV-1 virus infection of a chlorella-like green alga. Mol Cell Biol 6:1430–1439PubMedGoogle Scholar
  212. Xia Y, Burbank DE, Uher L, Rabussay D, Van Etten JL (1987) IL-3A virus infection of chlorella-like green alga induces a DNA restriction endonuclease with novel sequence specificity. Nucleic Acids Res 15:6075–6090PubMedCrossRefGoogle Scholar
  213. Xia Y, Morgan R, Schildkraut I, Van Etten JL (1988) A site-specific single strand endonuclease activity induced by NYs-1 virus infection of a chlorella like green alga. Nucleic Acids Res 16:9477–9487PubMedCrossRefGoogle Scholar
  214. Yamada T, Higashiyama T (1993) Characterization of the terminal inverted repeats and their neighboring tandem repeats in the chlorella CVK1 virus genome. Mol Gen Genet 241:554–563PubMedCrossRefGoogle Scholar
  215. Yamada T, Kawasaki T (2005) Microbial synthesis of hyaluronan and chitin: New approaches. J Biosci Bioeng 99:521–528PubMedCrossRefGoogle Scholar
  216. Yamada T, Tamura K, Aimi T, Songsri P (1994) Self-splicing group I introns in eukaryotic viruses. Nucleic Acids Res 22:2532–2537PubMedCrossRefGoogle Scholar
  217. Yamada T, Onimatsu H, Van Etten JL (2006) Chlorella viruses. In: Advances in virus research. Academic, pp 293–336Google Scholar
  218. Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS (2000) Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 7:101–103PubMedCrossRefGoogle Scholar
  219. Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS (2005) The marine algal virus PpV01 has an icosahedral capsid with T=219 quasisymmetry. J Virol 79:9236–9243PubMedCrossRefGoogle Scholar
  220. Zeidner G, Preston CM, Delong EF, Massana R, Post AF, Scanlan DJ, Béjà O (2003) Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ Microbiol 5:212–216PubMedCrossRefGoogle Scholar
  221. Zhang Y, Nelson M, Nietfeldt J, Xia Y, Burbank DE, Ropp S, Van Etten JL (1998) Chlorella virus NY-2A encodes at least twelve DNA endonuclease/methyltransferase genes. Virology 240:366–375PubMedCrossRefGoogle Scholar
  222. Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, Van Etten JL (2007) Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J Virol 81:7662–7671PubMedCrossRefGoogle Scholar
  223. Zhang YP, Strasser P, Grabherr R, Van Etten JL (1994) Hairpin loop structure at the termini of the chlorella virus PBCV-1 genome. Virology 202:1079–1082PubMedCrossRefGoogle Scholar
  224. Zingone A, Sarno D, Forlani G (1999) Seasonal dynamics in the abundance of Micromonas pusilla (Prasinophyceae) and its viruses in the Gulf of Naples (Mediterranean Sea). J Plankton Res 21:2143–2159CrossRefGoogle Scholar
  225. Zingone A, Natale F, Biffali E, Borra M, Forlani G, Sarno D (2006) Diversity in morphology, infectivity, molecular characteristics and induced host resistance between two viruses infecting Micromonas pusilla. Aquatic Microbial Ecol 45:1–14CrossRefGoogle Scholar
  226. Ziveri P, Broerse ATC, van Hinte JE, Westbroek P, Honjo S (2000) The fate of coccoliths at 48 degrees N 21 degrees W, northeastern Atlantic. Deep-Sea Research. Part II.Topical Studies in Oceanography 47:1853–1875CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • W. H. Wilson
    • 1
  • James L. Van Etten
    • M. J. Allen
      • 2
    1. 1.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA
    2. 2.Plymouth Marine LaboratoryThe HoeUK

    Personalised recommendations