Skip to main content

Dual-Energy X-Ray Absorptiometry

  • Chapter
Radiology of Osteoporosis

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Osteoporosis is the most common metabolic bone disease. It is characterised by reduced bone mass, altered bone architecture and the clinical consequence of fracture with little or no trauma (low-trauma fractures, insufficiency fractures). These fractures tend to occur most commonly in sites of the skeleton that are rich in trabecular bone: the wrist, spine and hip. It is the last of these which has the greatest morbidity and mortality, but all osteoporotic fractures result in pain and suffering for patients and have considerable socio-economic impact on health care systems and society generally (Cooper 1996). 1 in 2 women and 1 in 5 men over the age of 50 years will suffer a fracture in their lifetime in the Western world (van Staa et al. 2001). In the past 20 years there have been significant advances in knowledge of the epidemiology, patho-physiology, and treatment of osteoporosis (Sambrook and Cooper 2006). These therapies increase bone mineral density (BMD) by between 5–12% and, more importantly, reduce future fracture risk to a greater magnitude (decrements between 30–70%) (Royal College of Physicians 1999, 2000; Meunier 2001; Compston 2005; Poole and Compston 2006; Keen 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JE (1998) Single-and dual-energy X-ray absorptiometry. In: Genant HK, Guglielmi G, Jergas M (eds) Bone densitometry and osteoporosis. Springer, Berlin Heidelberg New York, p 305–334

    Google Scholar 

  • Adams JE (2008) Metabolic and endocrine skeletal disease. In: Grainger & Allison’s Diagnostic Radiology, 5th Edition. Vol 2, Sect 5 Musculoskeletal Chap 49. Churchill Livingstone Elsevier, Philadelphia, p 1083–1113

    Google Scholar 

  • Ahmed AIH, Blake GM, Rymer JM, Fogelman I (1997) Screening for osteoporosis and osteopenia: do the accepted normal ranges lead to overdiagnosis? Osteoporos Int 7:432–438

    Article  PubMed  CAS  Google Scholar 

  • Bachrach LK (2005) Assessing bone health in children: who to test and what does it mean? Pediatr Endocrinol Rev 2(S3):332–336

    PubMed  Google Scholar 

  • Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55

    PubMed  Google Scholar 

  • Blake GM, Fogelman I (1997) Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med 27:210–228

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Fogelman I (2007a) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517

    Article  PubMed  Google Scholar 

  • Blake GM, Fogelman I (2007b) The correction of BMD measurements for bone strontium content. J Clin Densitom 10:259–265

    Article  PubMed  Google Scholar 

  • Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice. Martin Dunitz, London

    Google Scholar 

  • Blake GM, Chinn DJ, Steel SA, Patel R, Panayiotou E, Thorpe J, Fordham JN, National Osteoporosis Society Bone Denstiometry Forum (2005) A list of device-specific thresholds for the clinical interpretation of peripheral X-ray absorptiometry examinations. Osteoporos Int 16:2149–2156

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Knapp KM, Spector TD, Fogelman I (2006a) Predicting the risk of fracture at any skeletal site: are all bone mineral density measurement sites equally effective? Calcif Tiss Int 78:9–17

    Article  CAS  Google Scholar 

  • Blake GM, Naeem M, Boutros M (2006b) Comparison of effective dose to children and adults from dual energy X-ray absorptiometry examinations. Bone 38:935–942

    Article  PubMed  Google Scholar 

  • Borgstrom F, Johnell O, Kanis JA, Jonsonn B, Rehnberg C (2006) At what hip fracture risk is it cost-effective to treat? International intervention thresholds for the treatment of osteoporosis. Osteoporos Int 17:1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Bouxsein ML, Parker RA, Greenspan SL (1999) Forearm bone mineral densitometry cannot be used to monitor response to alendronate. Osteoporos Int 10:505–509

    Article  PubMed  CAS  Google Scholar 

  • Brennan BM, Mughal Z, Roberts SA, Ward K, Shalet SM, Eden TO, Will AM, Stevens RF, Adams JE (2005) Bone mineral density in childhood survivors of acute lymphoblastic leukaemia treated without cranial irradiation. J Clin Endocrinol Metab 90:689–694

    Article  PubMed  CAS  Google Scholar 

  • Cameron JR, Sorenson J (1963) Measurement of bone mineral density in vivo: an improved method. Science 142:230–232

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    PubMed  CAS  Google Scholar 

  • Cheng S, Suominen H, Sakari-Rantala R, Laukkanen P, Avikainen V, Heikkinen E (1997) Calcaneal bone mineral density predicts fracture occurrence: a five-year follow-up study in elderly people. J Bone Miner Res 12:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Compston J (2005) Guidelines for the management of osteoporosis: the present and the future. Osteoporos Int 16:1173–1176

    Article  PubMed  Google Scholar 

  • Compston JE, Cooper C, Kanis JA (1995) Bone densitometry in clinical practice. Br Med J 310:1507–1510

    CAS  Google Scholar 

  • Cooper C (1996) Epidemiology and definition of osteoporosis. In: Compston JE (ed) Osteoporosis: new perspectives on causes, prevention and treatment. Royal College of Physicians of London p 1–10

    Google Scholar 

  • Crabtree NJ, Kibirige MS, Fordham J, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972

    Article  PubMed  CAS  Google Scholar 

  • Cullum ID, Ell PJ, Ryder JP (1989) X-ray dual photon absorptiometry: a new method for the measurement of bone density. Brit J Radiol 62:587–592

    PubMed  CAS  Google Scholar 

  • de Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593

    Article  PubMed  Google Scholar 

  • Del Rio L, Pons F, Huguet M, Setoain FJ (1995) Anteroposterior versus lateral bone mineral density of spine assessed by dual X-ray absorptiometry. Eur J Radiol 22:407–412

    Google Scholar 

  • Drage NA, Palmer RM, Blake GM, Wilson R, Crane F, Fogelman I (2007) A comparison of bone mineral density in the spine, hip and jaw of edentulous subjects. Clin Oral Implants Res 18:496–500

    Article  PubMed  Google Scholar 

  • Dunn WL, Wahner HW, Riggs BL (1980) Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology 136:485–487

    PubMed  CAS  Google Scholar 

  • Eastell R, Wahner HW, O’Fallon WM, Amadio PC, Melton LJ 3rd, Riggs BL (1989). Unequal decrease in bone density of the lumbar spine and ultradistal radius in Colles’ and vertebral fracture syndromes. J Clin Invest 83:168–174

    Article  PubMed  CAS  Google Scholar 

  • Engelke K, Gluer CC (2006) Quality and performance measures in bone densitometry: part 1: errors and diagnosis. Osteoporos Int 17:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Engelke K, Gluer CC (2006) Quality and performance measures in bone densitometry: part 2: fracture risk. Osteoporos Int 17:1449–1458

    Article  PubMed  Google Scholar 

  • Eiken P, Kolthoff N, Barenholdt O, Hermansen F, Pors Nielsen S (1994) Switching from pencil-beam to fanbeam. II. Studies in vivo. Bone 15:671–676

    Article  PubMed  CAS  Google Scholar 

  • European Communities/ European Foundation for Osteoporosis (1998) Building strong bones and preventing fractures. Summary report on osteoporosis in the European Community — action for prevention. European Communities/European Foundation for Osteoporosis, Germany, p 3–12

    Google Scholar 

  • Faulkner KG, McClung MR (1995) Quality control of DXA instruments in multicenter trials. Osteoporos Int 5:218–227

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG, Gluer CC, Majumdar S, Lang P, Engelke K, Genant HK (1991) Non-invasive measurements of bone mass, structure and strength: current methods and experimental techniques. Am J Radiol 157:1229–1237

    CAS  Google Scholar 

  • Faulkner RA, Bailey DA, Drinkwater DT, Wilkinson AA, Houston CS, McKay HA (1993) Regional and total body bone mineral content, bone mineral density, and total body tissue composition in children 8–16 years of age. Calcif Tissue Int 53:7–12

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9:1065–1070

    PubMed  CAS  Google Scholar 

  • Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-score. J Clin Densitom 2:343–350

    Article  PubMed  CAS  Google Scholar 

  • Ferrar L, Jiang G, Eastell R, Peel NF (2003) Visual identification of vertebral fractures in osteoporosis using morphometric X-ray absorptiometry. J Bone Miner Res 18:933–938

    Article  PubMed  CAS  Google Scholar 

  • Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728

    Article  PubMed  CAS  Google Scholar 

  • Fewtrell MS; British Paediatric and Adolescent Bone Group (2003) Bone densitometry in children assessed by dual X-ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798

    Article  PubMed  CAS  Google Scholar 

  • Fogelman I, Blake GM (2005) Bone densitometry: an update. Lancet 366(9503):2068–2070

    Article  PubMed  Google Scholar 

  • Franck H, Munz M, Scherrer M (1995) Evaluation of dualenergy X-ray absorptiometry bone mineral measurement — comparison of a single-beam and fan beam design: the effect of osteophytic calcification on spine bone mineral density. Calcif Tissue Int 56:192–195

    Article  PubMed  CAS  Google Scholar 

  • Frohn J, Wilken T, Falk S, Strutte HJ, Kollath J, Hor G (1991) Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptimetry. J Nucl Med 32:259–262

    PubMed  CAS  Google Scholar 

  • Genant HK, Grampp S, Glueer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, van Kuijk C (1994) Universal standardisation for the dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    PubMed  CAS  Google Scholar 

  • Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    PubMed  CAS  Google Scholar 

  • Genant HK, Li Y, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290

    Article  PubMed  CAS  Google Scholar 

  • Gilsanz V (1998) Bone density in children: a review of the available techniques and indications. Eur J Radiol 26:177–182

    Article  PubMed  CAS  Google Scholar 

  • Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962

    Article  PubMed  CAS  Google Scholar 

  • Gluer CC, Blake G, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  PubMed  CAS  Google Scholar 

  • Goh JC, Low SL, Bose K (1995) Effect of femoral rotation on bone mineral density measurements with dual energy Xray absorptiometry. Calcif Tissue Int 57:340–343

    Article  PubMed  CAS  Google Scholar 

  • Grampp S, Jergas M, Gluer CC, Lang P, Brastow P, Genant HK (1993) Radiologic diagnosis of osteoporosis: current methods and perspectives. Radiol Clin North Am 31(5):1131–1145

    Google Scholar 

  • Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer CC, Lu Y, Chavez M (1997) Comparisons of non-invasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 12:697–711

    Article  PubMed  CAS  Google Scholar 

  • Gregory JS, Testi D, Stewart A, Undrill PE, Reid DM, Aspden RM (2004) A method of assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos Int 15:5–11

    Article  PubMed  CAS  Google Scholar 

  • Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM (2005) Bone shape, structure and density as determinants of osteoporotic hip fracture: a pilot study investigating the combination of risk fracture. Invest Radiol 40:591–597

    Article  PubMed  Google Scholar 

  • Griffin MC, Kimble R, Hopfer W, Pacifici R (1993) Dualenergy X-ray absorptiometry of the rat: accuracy, precision and measurement of bone loss. J Bone Miner Res 8:795–800

    PubMed  CAS  Google Scholar 

  • Griffiths MR, Noakes KA, Pocock NA (1997) Correcting the magnification error of fan beam densitometers. J Bone Miner Res 12:119–123

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    PubMed  CAS  Google Scholar 

  • Harrison EJ, Adams JE (2006) Application of a triage approach to peripheral bone densitometry reduces requirement for central DXA, but is not cost effective. Calc Tiss Int 79:199–206

    Article  CAS  Google Scholar 

  • Haugeberg G, Emery P (2005) Value of dual-energy X-ray absorptiometry as a diagnostic tool in early rheumatoid arthritis. Rheum Dis Clin North Am 31:715–728

    Article  PubMed  Google Scholar 

  • Holmes SJ, Economou G, Whitehouse RW, Adams JE, Shalet SM (1994) Reduced bone mineral density in patients with adult onset growth hormone deficiency. J Clin Endocrinol Metab 78:669–674

    Article  PubMed  CAS  Google Scholar 

  • Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88

    Article  PubMed  CAS  Google Scholar 

  • Horner K, Devlin H, Alsop CW, Hodgkinson IM, Adams JE (1996) Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radiol 69:1019–1025

    PubMed  CAS  Google Scholar 

  • Huda W, Morin RL (1996) Patient doses in bone densitometry Br J Radiol 69:422–425

    PubMed  CAS  Google Scholar 

  • Hui SL, Gao S, Zhou XH, Johston CC Jr, Lu Y, Gluer CC, Grampp S, Genant HK (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • International Society for Clinical Densitometry (2005) 342 North Main Street, West Hartford CT06117-2507 USA; www.ISCD.org

    Google Scholar 

  • Jaovisidha S, Sartoris DJ, Martin EM, De Maeseneer M, Szollar SM, Deftos LJ (1997) Influence of spondylopathy on bone densitometry using dual energy X-ray absorptiometry. Calcif Tissue Int 60:424–429

    Article  PubMed  CAS  Google Scholar 

  • Jergas M, Breitenseher M, Gluer CC, Black D, Lang P Grampp s, Engelke K, Genant HK (1995) Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204

    Article  PubMed  CAS  Google Scholar 

  • Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2:82–87

    Article  PubMed  CAS  Google Scholar 

  • Kalender WA, Felsenberg D, Genant HK, Dequeker J, Reeve J (1995) The European Spine Phantom: a tool for standardization and quality control in spinal bone mineral measurement by DXA and QCT. Eur J Radiol 20:83–92

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936

    Article  PubMed  Google Scholar 

  • Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis: EFFO report. Osteoporos Int 7:390–406

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Gluer C, for the Committee of the Scientific Advisors, International Osteoporosis Foundation (2000) An update in the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 11:192–202

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johnell O, Oden A, Johansson H, Eisman JA, Fujiwara S, Kroger H, Honkanen R, Melton LJ Jr, O’Neill T, Reeve J, Silman A, Tenenhouse A (2006) The use of multiple sites for the diagnosis of osteoporosis. Osteoporos Int 17:527–534

    Article  PubMed  CAS  Google Scholar 

  • Kastl S, Sommer T, Klein P, Hohenberger W, Engelke K (2002) Accuracy and precision oof bone mineral density and bone mineral content in the excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone 30:243–246

    Article  PubMed  CAS  Google Scholar 

  • Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    PubMed  CAS  Google Scholar 

  • Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844

    Article  PubMed  CAS  Google Scholar 

  • Keen R (2007) Osteoporosis: strategies for prevention and management. Best Pract Res Clin Rheumatol 21:109–122

    Article  PubMed  Google Scholar 

  • Kim J, Shen W, Gallagher D, Jones A Jr, Wang Z, Wang J, Heshka S, Heymsfield SB (2006) Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents Am J Nutr 84:1014–1020

    CAS  Google Scholar 

  • Koo WW, Hockman EM, Hammami M (2004) Dual energy X-ray absorptiometry measurements in small subjects: conditions affecting clinical measurements. J Am Coll Nutr 23:212–219

    PubMed  Google Scholar 

  • Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  PubMed  CAS  Google Scholar 

  • Kroger H, Huopio J, Honkanen R, Tuppurainen M, Puntila E, Alhava E, Saarikoski S (1995) Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 10:302–306

    PubMed  CAS  Google Scholar 

  • Laskey MA, Crisp AJ, Compston JE, Khaw KT (1993) Heterogeneity of spine bone density. Br J Radiol 66:480–483

    PubMed  CAS  Google Scholar 

  • Lewis MK, Blake GM (1995) Patient dose in morphometric X-ray absorptiometry Osteoporos Int 5:281–282

    Article  PubMed  CAS  Google Scholar 

  • Lewis MK, Blake GM, Fogelman I (1994) Patient doses in dual X-ray absorptiometry. Osteoporos Int 4:11–15

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Guglielmi G, van Kuijk C, Adams JE (2005) Radiologic assessment of osteoporotic fracture: diagnostic and prognostic implications. Eur Radiol 15:1521–1532

    Article  PubMed  Google Scholar 

  • Lu PW, Cowell CT, Lloyd-Jones SA, Briody J, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab; 81:1586–1590

    Article  PubMed  CAS  Google Scholar 

  • Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  PubMed  CAS  Google Scholar 

  • Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5-27 years. J Clin Endocrinol Metab 81:1586–1590

    Article  PubMed  CAS  Google Scholar 

  • Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259

    CAS  Google Scholar 

  • Melton LJ, Eddy DM, Johnson CC (1990) Screening for osteoporosis. Ann Intern Med 112:516–528

    PubMed  Google Scholar 

  • Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233

    PubMed  Google Scholar 

  • Meunier PJ (2001) Anabolic agents for treatment of postmenopausal osteoporosis. J Bone Spine 68:576–581

    Article  CAS  Google Scholar 

  • Miller P (2000) Controversies in bone mineral density diagnostic classification. Calcif Tissue Int 66:317–319

    Article  PubMed  CAS  Google Scholar 

  • Miller P, Bonnick SL Rosen CJ (1996) Consensus of an international panel on the clinical utility of bone mass measurements in the detection of low bone mass in the adult population. Calcif Tissue Int 58:207–214

    PubMed  CAS  Google Scholar 

  • Mølgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15

    Article  PubMed  Google Scholar 

  • National Osteoporosis Society (2001) Position statement on the use of peripheral X-ray absorptiometry in the management of osteoporosis. National Osteoporosis Society, Camerton, Bath, UK, p 1–15

    Google Scholar 

  • National Osteoporosis Society (2004) A practical guide to bone densitometry in children. National Osteoporosis Society, Camerton, bath, BA2 0PJ, UK

    Google Scholar 

  • Njeh CF, Apple K, Temperton DH, Boivin CM (1996) Radiological assessment of a new bone densitometer: the Lunar expert. Br J Radiol 69:335–340

    PubMed  CAS  Google Scholar 

  • Nord RH (1992) Work in progress: a cross-calibration study of four DXA instruments designed to culminate in inter-manufacturer standardization. Osteoporos Int 2:210–211

    Article  PubMed  CAS  Google Scholar 

  • Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207

    PubMed  CAS  Google Scholar 

  • Pacheco EM, Harrison EJ, Ward KA, Lunt M, Adams JE (2002) Detection of osteoporosis by dual energy X-ray absorptiometry (DXA) of the calcaneus: is the WHO criterion applicable? Calcif Tissue Int 70:475–482

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1990) Interpretation of bone densitometry measurements: disadvantages of a percentage scale and a discussion of some alternatives. J Bone Miner Res 5:537–540

    PubMed  CAS  Google Scholar 

  • Patel R, Blake GM, Herd RJM, Fogelman I (1997) The effect of weight change on DXA scans in a 2 year prospective clinical trial of cyclical etidronate therapy. Calcif Tissue Int 61:393–399

    Article  PubMed  CAS  Google Scholar 

  • Patel R, Blake GM, Fogelman I (2004) An evaluation of the United Kingdom Osteoporosis Society position statement on the use of peripheral dual-energy X-ray absorptiometry. Osteoporos Int 15:497–504

    Article  PubMed  Google Scholar 

  • Peel N, Eastell R (1993) Measurement of bone mass and turnover. Baillieres Clin Rheumatol 7:479–498

    Article  PubMed  CAS  Google Scholar 

  • Peel N, Johnson A, Barrington NA, Smith TW, Eastell R (1993) Impact of anomalous vertebral segmentation on the measurements of bone mineral density. J Bone Miner Res 8:719–723

    Article  PubMed  CAS  Google Scholar 

  • Poole KE, Compston JE (2006) Osteoporosis and its management. BMJ 333(7581):1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Pietrobelli A, Formica C, Wang Z, Heymsfield SB (1996) Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 271(6 Pt 1) E941–951

    PubMed  CAS  Google Scholar 

  • Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to sizerelated artifacts in the identification of bone mineral determinants. Am J Clin Nutr; 60:837–842

    PubMed  CAS  Google Scholar 

  • Prince RL (2007) Calcium and vitamin D — for whom and when. Menopause Int 13:35–37

    Article  PubMed  Google Scholar 

  • Quek ST, Peh WC (2002) Radiology of osteoporosis. Semin Musculoskelet Radiol 6:197–206

    Article  PubMed  Google Scholar 

  • Rea JA, Steiger P, Blake GM, Fogelman I (1998) Optimizing data acquisition and analysis of morphometric X-ray absorptiometry. Osteoporos Int 8:177–183

    Article  PubMed  CAS  Google Scholar 

  • Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668

    Article  PubMed  CAS  Google Scholar 

  • Rea JA, Chen MB, Li J, Marsh E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (2001) Vertebral morphometry: a comparison of long-term precision of morphometric X-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 12:158–166

    Article  PubMed  CAS  Google Scholar 

  • Roberts MG, Cootes TF, Pacheco EM, Adams JE (2007) Quantitative fracture detection on Dual Energy X-ray Absorptiometry (DXA) images using shape and appearance models. Acad Radiol 14:1166–1178

    Article  PubMed  Google Scholar 

  • Royal College of Physicians (1999) Osteoporosis: guidelines for prevention and treatment. Royal College of Physicians, London, UK, p 63–70

    Google Scholar 

  • Royal College of Physicians (2000) Osteoporosis: clinical guidelines for prevention and treatment. Update on pharmacological interventions and an algorithm for management. Royal College of Physicians, London, UK, pp 1–16

    Google Scholar 

  • Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ (1992) Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr 81:953–958

    Article  PubMed  CAS  Google Scholar 

  • Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367(9527):2010–2018

    Article  PubMed  CAS  Google Scholar 

  • Sawyer AJ, Bachrach LK, Fung EB (Eds) (2006) Bone densitometry in growing patients; guidelines for clinical practice. Humana Press http://www.humanapress.com

    Google Scholar 

  • Sanchez MM, Gilsanz V (2005) Pediatric DXA measurements Pediatr Endocrinol Rev 2Suppl 3:337–341

    PubMed  Google Scholar 

  • Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254

    Article  PubMed  CAS  Google Scholar 

  • Sievanen H, Oja P, Vuori I (1992) Precision of dual energy x-ray absorptiometry in determining bone mineral density and content of various skeletal sites. J Nucl Med 33:1137–1142

    PubMed  CAS  Google Scholar 

  • Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211:571–578

    PubMed  CAS  Google Scholar 

  • Soininvaara T, Kroger H, Jurvelin JS, Miettinen H, Suomalainen O, Alhava E (2000) Measurement of bone density around total knee arthroplasty using fan-beam dual energy X-ray absorptiometry. Calcif Tissue Int 67:267–272

    Article  PubMed  CAS  Google Scholar 

  • Tothill P, Hannan WJ (2000) Comparison between Hologic QDR 1000 W, QDR 4500A, and Lunar Expert dual-energy X-ray absorptiometry scanners for measuring total bone and soft tissues. Ann N Y Acad Sci 904:63–71

    Article  PubMed  CAS  Google Scholar 

  • van Rijn RR, van der Sluis IM, Link TM, Grampp S, Guglielmi G, Imhof H, Glüer C, Adams JE, van Kuijk C (2003) Bone densitometry in children: a critical appraisal. Eur Radiol 13:700–710

    PubMed  Google Scholar 

  • van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29:517–522

    Article  PubMed  Google Scholar 

  • Vokes T, Bachman D, Baim S, Binkley N, Broy S, Ferrar L, Lewiecki EM, Richmand B, Schousboe J; International Society of Clinical Densitometry (2006) Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom 9:37–46

    Article  PubMed  Google Scholar 

  • Ward KA, Mughal Z, Adams JE (2006) Tools for measuring bone in children and adolescents. In: Bone densitometry in growing patients; guidelines for clinical practice. Editors: Sawyer AJ, Bachrach LK, Fung EB Humana Press http://www.humanapress.com pp 15–40

    Google Scholar 

  • Ward KA, Ashby RL, Roberts SA, Adams JE, Mughal MZ (2007) UK reference data for the Hologic QDR Discovery dual energy X-ray absorptiometry scanner in healthy children aged 6-17 years. Arch Dis Child 92:53–59

    Article  PubMed  Google Scholar 

  • Warner JT, Cowan FJ, Dunstan FD, Evand WD, Webb DK, Gregory JW (1998) Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr 87:244–249

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM, Peel NF, Elson RA, Stockley I, Eastell R (2001) Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J Bone Joint Surg Br 83:283–288

    Article  PubMed  CAS  Google Scholar 

  • Wilson CR, Fogelman I, Blake GM, Rodin A (1991) The effect of positioning on dual-energy X-ray absorptiometry of the proximal femur. Bone Miner 13:69–76

    Article  PubMed  CAS  Google Scholar 

  • Wishart J, Horowitz M, Need A, Nordin BE (1990) Relationship between forearm and vertebral mineral density in postmenopausal women with primary hyperparathyroidism. Arch Intern Med 150:1329–1331

    Article  PubMed  CAS  Google Scholar 

  • World Health Organisation Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organisation, Geneva, Switzerland (WHO Technical Report Series 843)

    Google Scholar 

  • Young JT, Carter K, Marion MS, Greendale GA (2000) A simple method of computing hip axis length using fan-beam densitometry and anthropomorphic measurements. J Clin Densitom 3:325–331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, J.E. (2008). Dual-Energy X-Ray Absorptiometry. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68604-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68604-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25888-9

  • Online ISBN: 978-3-540-68604-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics