Skip to main content

Introduction to Bone Development, Remodelling and Repair

  • Chapter
Radiology of Osteoporosis

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Bone is a specialized form of mineralized connective tissue that is build by various types of metabolically active cells during embryonic and postnatal development. In the adult, the same cells contribute to the maintenance of structural and functional integrity, and accomplish the healing process following injury. Bone not only shows a marked rigidity and mechanical stability while still maintaining some degree of elasticity, but also constitutes the most important storage site for calcium and inorganic phosphate (Baron 1993). Osteoporosis is a systemic disease where rigidity and mechanical stability of bone declines, until bone loses the ability to withstand functional loading or weak traumata. A transient but disproportional bone loss of 20%–30% trabecular and 5%–10% cortical bone is most apparent in women during the first postmenopausal decade. The following slow phase accounts for 20%–30% of trabecular and cortical bone loss in both sexes. Epidemiologic data show that the lifetime risk to acquire hip fractures is 17% for white women and 6% for white men (Cummings and Melton 2002; Melton 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15:663–673

    PubMed  CAS  Google Scholar 

  • Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M (2003) TSH is a negative regulator of skeletal remodeling. Cell 115:151–162

    PubMed  CAS  Google Scholar 

  • Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML (2005) Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol 25:4946–4955

    PubMed  CAS  Google Scholar 

  • Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10:822–837

    PubMed  CAS  Google Scholar 

  • Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    PubMed  CAS  Google Scholar 

  • Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109:915–921

    PubMed  CAS  Google Scholar 

  • Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815

    PubMed  CAS  Google Scholar 

  • Baron R (1993) Anatomy and ultrastructure of bone. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Raven, New York, pp 3–9

    Google Scholar 

  • Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien C A, Manolagas SC, Jilka RL (2005) Chronic elevation of PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583

    PubMed  CAS  Google Scholar 

  • Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14:251–262

    PubMed  Google Scholar 

  • Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–35

    PubMed  CAS  Google Scholar 

  • Bismar H, Diel I, Ziegler R, Pfeilschifter J (1995) Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab 80:3351–3355

    PubMed  CAS  Google Scholar 

  • Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ (2005) One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. N Engl J Med 353:555–565

    PubMed  CAS  Google Scholar 

  • Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257

    PubMed  CAS  Google Scholar 

  • Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    PubMed  CAS  Google Scholar 

  • Burt-Pichat B, Lafage-Proust MH, Duboeuf F, Laroche N, Itzstein C, Vico L, Delmas PD, Chenu C (2005) Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology 146:503–510

    PubMed  CAS  Google Scholar 

  • Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    PubMed  CAS  Google Scholar 

  • Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91

    PubMed  CAS  Google Scholar 

  • Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264

    PubMed  CAS  Google Scholar 

  • Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    PubMed  CAS  Google Scholar 

  • Cardaropoli G, Araujo M, Lindhe J (2003) Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol 30:809–818

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    PubMed  CAS  Google Scholar 

  • Cecchini MG, Hofstetter W, Halasy J, Wetterwald A, Felix R (1997) Role of CSF-1 in bone and bone marrow development. Mol Reprod Dev 46:75–83; discussion 83–84

    PubMed  CAS  Google Scholar 

  • Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD, Meunier PJ (1992) Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 327:1637–1642

    PubMed  CAS  Google Scholar 

  • Chapuy MC, Arlot ME, Delmas PD, Meunier PJ (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308:1081–1082

    PubMed  CAS  Google Scholar 

  • Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480

    PubMed  CAS  Google Scholar 

  • Christakos S, Dhawan P, Liu Y, Peng X, Porta A (2003) New insights into the mechanisms of vitamin D action. J Cell Biochem 88:695–705

    PubMed  CAS  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    PubMed  Google Scholar 

  • Dai J, Rabie AB, Hagg U, Xu R (2004) Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther 4:469–485

    PubMed  CAS  Google Scholar 

  • Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/betacatenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    PubMed  CAS  Google Scholar 

  • Delmas PD (2002) Treatment of postmenopausal osteoporosis. Lancet 359:2018–2026

    PubMed  CAS  Google Scholar 

  • Delmas PD, Hardy P, Garnero P, Dain M (2000) Monitoring individual response to hormone replacement therapy with bone markers. Bone 26:553–560

    PubMed  CAS  Google Scholar 

  • DeLuca HF (1988) The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2:224–36

    PubMed  CAS  Google Scholar 

  • Devlin RD, Du Z, Pereira RC, Kimble RB, Economides AN, Jorgetti V, Canalis E (2003) Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 144:1972–1978

    PubMed  CAS  Google Scholar 

  • Dobnig H, Turner RT (1997) The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138:4607–4612

    PubMed  CAS  Google Scholar 

  • Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838

    PubMed  CAS  Google Scholar 

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    PubMed  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    PubMed  CAS  Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000a) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000b) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    PubMed  CAS  Google Scholar 

  • Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289:F8–F28

    PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966

    PubMed  CAS  Google Scholar 

  • Eisman JA (2001) Good, good, good... good vibrations: the best option for better bones? Lancet 358:1924–1925

    PubMed  CAS  Google Scholar 

  • Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    PubMed  CAS  Google Scholar 

  • Fini M, Giavaresi G, Setti S, Martini L, Torricelli P, Giardino R (2004) Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation. Int J Artif Organs 27:681–690

    PubMed  CAS  Google Scholar 

  • Fleischmann RM, Iqbal I, Stern RL (2004) Considerations with the use of biological therapy in the treatment of rheumatoid arthritis. Expert Opin Drug Saf 3:391–403

    PubMed  CAS  Google Scholar 

  • Francis-West PH, Parish J, Lee K, Archer CW (1999) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296:111–119

    PubMed  CAS  Google Scholar 

  • Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188

    PubMed  CAS  Google Scholar 

  • Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15

    PubMed  Google Scholar 

  • Gao Y, Qian WP, Dark K, Toraldo G, Lin AS, Guldberg RE, Flavell RA, Weitzmann MN, Pacifici R (2004) Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proc Natl Acad Sci U S A 101:16618–16623

    PubMed  CAS  Google Scholar 

  • Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P (2002) High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol 22:6222–6233

    PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    PubMed  CAS  Google Scholar 

  • Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    PubMed  CAS  Google Scholar 

  • Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    PubMed  CAS  Google Scholar 

  • Govoni KE, Baylink DJ, Mohan S (2005) The multi-functional role of insulin-like growth factor binding proteins in bone. Pediatr Nephrol 20:261–268

    PubMed  Google Scholar 

  • Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    PubMed  CAS  Google Scholar 

  • He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677

    PubMed  CAS  Google Scholar 

  • Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738

    PubMed  CAS  Google Scholar 

  • Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid Hormone and Teriparatide for the Treatment of Osteoporosis: A Review of the Evidence and Suggested Guidelines for Its Use. Endocr Rev 26:688–703

    PubMed  CAS  Google Scholar 

  • Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140:4367–4370

    PubMed  CAS  Google Scholar 

  • Hoshi K, Komori T, Ozawa H (1999) Morphological characterization of skeletal cells in Cbfa1-deficient mice. Bone 25:639–651

    PubMed  CAS  Google Scholar 

  • Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136

    PubMed  CAS  Google Scholar 

  • Inzerillo AM, Zaidi M, Huang CL (2004) Calcitonin: physiological actions and clinical applications. J Pediatr Endocrinol Metab 17:931–940

    PubMed  CAS  Google Scholar 

  • Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, Zhang X, Rubery PT, Rabinowitz J, Samulski RJ, Nakamura T, Soballe K, O’Keefe RJ, Boyce BF, Schwarz EM (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 11:291–297

    PubMed  CAS  Google Scholar 

  • Jadlowiec JA, Celil AB, Hollinger JO (2003) Bone tissue engineering: recent advances and promising therapeutic agents. Expert Opin Biol Ther 3:409–423

    PubMed  CAS  Google Scholar 

  • Jilka RL (1998) Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 23:75–81

    PubMed  CAS  Google Scholar 

  • Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    PubMed  CAS  Google Scholar 

  • Jilka RL, Passeri G, Girasole G, Cooper S, Abrams J, Broxmeyer H, Manolagas SC (1995) Estrogen loss upregulates hematopoiesis in the mouse: a mediating role of IL-6. Exp Hematol 23:500–506

    PubMed  CAS  Google Scholar 

  • Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101:1942–1950

    PubMed  CAS  Google Scholar 

  • Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446

    PubMed  CAS  Google Scholar 

  • Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y, Kumegawa M (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186:489–495

    PubMed  CAS  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    PubMed  CAS  Google Scholar 

  • Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S (2003) Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 100:9416–9421

    PubMed  CAS  Google Scholar 

  • Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    PubMed  CAS  Google Scholar 

  • Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    PubMed  CAS  Google Scholar 

  • Kitazawa R, Kimble RB, Vannice JL, Kung VT, Pacifici R (1994) Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest 94:2397–2406

    PubMed  CAS  Google Scholar 

  • Knothe Tate ML, Adamson JR, Tami AE, Bauer TW (2004) The osteocyte. Int J Biochem Cell Biol 36:1–8

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Kronenberg H. Minireview: transcriptional regulation in development of bone. Endocrinology (2005) 146(3):1012–7

    PubMed  CAS  Google Scholar 

  • Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    PubMed  CAS  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    PubMed  CAS  Google Scholar 

  • Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846

    PubMed  CAS  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    PubMed  CAS  Google Scholar 

  • Kronenberg HM (2004) Twist genes regulate Runx2 and bone formation. Dev Cell 6:317–318

    PubMed  CAS  Google Scholar 

  • Kundu M, Javed A, Jeon JP, Horner A, Shum L, Eckhaus M, Muenke M, Lian JB, Yang Y, Nuckolls GH, Stein GS, Liu PP (2002) Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet 32:639–644

    PubMed  CAS  Google Scholar 

  • Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    PubMed  CAS  Google Scholar 

  • Leach JK, Mooney DJ (2004) Bone engineering by controlled delivery of osteoinductive molecules and cells. Expert Opin Biol Ther 4:1015–1027

    PubMed  CAS  Google Scholar 

  • Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16:307–310

    PubMed  CAS  Google Scholar 

  • Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    PubMed  CAS  Google Scholar 

  • Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19

    PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    PubMed  CAS  Google Scholar 

  • Lorenzo JA, Naprta A, Rao Y, Alander C, Glaccum M, Widmer M, Gronowicz G, Kalinowski J, Pilbeam CC (1998) Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology 139:3022–3025

    PubMed  CAS  Google Scholar 

  • Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    PubMed  CAS  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    PubMed  CAS  Google Scholar 

  • Marie PJ (2003) Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316:23–32

    PubMed  CAS  Google Scholar 

  • Marks S, Odgren PR (2002) The structure and development of bone. In: Bilezikian JB, Raize LG, Rodan GA (eds). Principles of bone biology II. Academic, San Diego, pp 3–15

    Google Scholar 

  • Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76–81

    PubMed  CAS  Google Scholar 

  • Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646

    PubMed  CAS  Google Scholar 

  • Melton LJ 3rd (1995) How many women have osteoporosis now? J Bone Miner Res 10:175–177

    PubMed  Google Scholar 

  • Meunier PJ, Sebert JL, Reginster JY, Briancon D, Appelboom T, Netter P, Loeb G, Rouillon A, Barry S, Evreux JC, Avouac B, Marchandise X (1998) Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteoporos Int 8:4–12

    PubMed  CAS  Google Scholar 

  • Mihara M, Nishimoto N, Ohsugi Y (2005) The therapy of autoimmune diseases by anti-interleukin-6 receptor antibody. Expert Opin Biol Ther 5:683–690

    PubMed  CAS  Google Scholar 

  • Minkowitz B, Boskey AL, Lane JM, Pearlman HS, Vigorita VJ (1991) Effects of propranolol on bone metabolism in the rat. J Orthop Res 9:869–875

    PubMed  CAS  Google Scholar 

  • Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    PubMed  CAS  Google Scholar 

  • Miyaura C, Onoe Y, Inada M, Maki K, Ikuta K, Ito M, Suda T (1997) Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency. Proc Natl Acad Sci U S A 94:9360–9365

    PubMed  CAS  Google Scholar 

  • Mont MA, Ragland PS, Biggins B, Friedlaender G, Patel T, Cook S, Etienne G, Shimmin A, Kildey R, Rueger DC, Einhorn TA (2004) Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J Bone Joint Surg Am 86-ASuppl 2:41–55

    PubMed  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    PubMed  CAS  Google Scholar 

  • Murphy WL, Simmons CA, Kaigler D, Mooney DJ (2004) Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res 83:204–210

    PubMed  CAS  Google Scholar 

  • Murray TM, Rao LG, Divieti P, Bringhurst FR (2005) Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr Rev 26:78–113

    PubMed  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    PubMed  CAS  Google Scholar 

  • Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    PubMed  CAS  Google Scholar 

  • Nijweide PBE, Klein-Nulend J (2002) The osteocyte. In: Bilezikian JP, Raisz CG, Rodan GA (eds) Principles in bone biology. Academic, San Diego, pp 93–107

    Google Scholar 

  • Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3:27–41

    PubMed  CAS  Google Scholar 

  • Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG, Pilbeam CC (2000) Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest 105:823–832

    PubMed  CAS  Google Scholar 

  • Olney RC (2003) Regulation of bone mass by growth hormone. Med Pediatr Oncol 41:228–234

    PubMed  Google Scholar 

  • Onishi T, Ishidou Y, Nagamine T, Yone K, Imamura T, Kato M, Sampath TK, ten Dijke P, Sakou T (1998) Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22:605–612

    PubMed  CAS  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    PubMed  CAS  Google Scholar 

  • Paralkar VM, Borovecki F, Ke HZ, Cameron KO, Lefker B, Grasser WA, Owen TA, Li M, DaSilva-Jardine P, Zhou M, Dunn RL, Dumont F, Korsmeyer R, Krasney P, Brown TA, Plowchalk D, Vukicevic S, Thompson DD (2003) An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A 100:6736–6740

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1998) Osteoclast precursors as leukocytes: importance of the area code. Bone 23:491–494

    PubMed  CAS  Google Scholar 

  • Parfitt AM (2000) The mechanism of coupling: a role for the vasculature. Bone 26:319–323

    PubMed  CAS  Google Scholar 

  • Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7

    PubMed  CAS  Google Scholar 

  • Paris O, Zizak I, Lichtenegger H, Roschger P, Klaushofer K, Fratzl P (2000) Analysis of the hierarchical structure of biological tissues by scanning X-ray scattering using a micro-beam. Cell Mol Biol (Noisy-le-Grand) 46:993–1004

    CAS  Google Scholar 

  • Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC (2004) Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 19:19–24

    PubMed  CAS  Google Scholar 

  • Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR, Charrier K, Morrissey PJ, Ware CB, Mohler KM (1998) TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 160:943–952

    PubMed  CAS  Google Scholar 

  • Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328:658–665

    PubMed  CAS  Google Scholar 

  • Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16:247–252

    PubMed  CAS  Google Scholar 

  • Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC (2005) Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 20:613–618

    PubMed  CAS  Google Scholar 

  • Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    PubMed  CAS  Google Scholar 

  • Robey PG (2002) Bone matrix proteoglycans and glycoproteins. In: Bilezikian JB, Raize LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego, Connect Tissue Res 35:225–237

    Google Scholar 

  • Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    PubMed  CAS  Google Scholar 

  • Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 8:740–748

    PubMed  Google Scholar 

  • Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–13965

    PubMed  CAS  Google Scholar 

  • Roodman GD (1996) Advances in bone biology: the osteoclast. Endocr Rev 17:308–332

    PubMed  CAS  Google Scholar 

  • Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    PubMed  CAS  Google Scholar 

  • Rossert J, de Crombrugghe B (2002) In: Bilezikian JP, Raisz CG, Rodan GA (eds) Type I collagen: structure, synthesis and regulation. Principles in bone biology. Academic, San Diego, pp 189–210

    Google Scholar 

  • Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    PubMed  CAS  Google Scholar 

  • Schenk RK (1994) Bone regeneration. In Buser D, Dahlin C, Schenk RK (eds) Guided bone regeneration in implant dentistr. Quintessence Publishing, pp 49–100

    Google Scholar 

  • Schenk RK, Hunziker EB (1994) Histologic and ultrastructural features of fracture healing. In: Brighton CT, Friedlaender G, Lane JM, eds. Bone Formation and Repair. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 117–145

    Google Scholar 

  • Schlienger RG, Kraenzlin ME, Jick SS, Meier CR (2004) Use of beta-blockers and risk of fractures. JAMA 292:1326–1332

    PubMed  CAS  Google Scholar 

  • Schmelzeisen R, Schimming R, Sittinger M (2003) Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg 31:34–39

    PubMed  Google Scholar 

  • Shrader SP, Ragucci KR (2005) Parathyroid hormone (1–84) and treatment of osteoporosis. Ann Pharmacother 39:1511–1516

    PubMed  CAS  Google Scholar 

  • Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593

    PubMed  CAS  Google Scholar 

  • Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30:18–25

    PubMed  CAS  Google Scholar 

  • Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80:2752–2756

    PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442

    PubMed  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    PubMed  CAS  Google Scholar 

  • Stokstad E (2005) Bone quality fills holes in fracture risk. Science 308:1580

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclasts differentiation. Endocr Rev 13:66–80

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    PubMed  CAS  Google Scholar 

  • Swaminathan R (2001) Biochemical markers of bone turnover. Clin Chim Acta 313:95–105

    PubMed  CAS  Google Scholar 

  • Syed F, Khosla S (2005) Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 328:688–96

    PubMed  CAS  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639

    PubMed  CAS  Google Scholar 

  • Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179

    PubMed  CAS  Google Scholar 

  • Takeda S (2005) Central control of bone remodeling. Biochem Biophys Res Commun 328:697–699

    PubMed  CAS  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    PubMed  CAS  Google Scholar 

  • Tanaka M, Sakai A, Uchida S, Tanaka S, Nagashima M, Katayama T, Yamaguchi K, Nakamura T (2004) Prostaglandin E2 receptor (EP4) selective agonist (ONO-4819.CD) accelerates bone repair of femoral cortex after drill-hole injury associated with local upregulation of bone turnover in mature rats. Bone 34:940–948

    PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    PubMed  CAS  Google Scholar 

  • Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12:315–317

    PubMed  CAS  Google Scholar 

  • Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten FP (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17:58–64

    PubMed  CAS  Google Scholar 

  • Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386:81–84

    PubMed  CAS  Google Scholar 

  • Toraldo G, Roggia C, Qian WP, Pacifici R, Weitzmann MN (2003) IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci USA 100:125–130

    PubMed  CAS  Google Scholar 

  • Turgeon JL, McDonnell DP, Martin KA, Wise PM (2004) Hormone therapy: physiological complexity belies therapeutic simplicity. Science 304:1269–1273

    PubMed  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    PubMed  CAS  Google Scholar 

  • van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814

    PubMed  Google Scholar 

  • van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801

    PubMed  Google Scholar 

  • Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY (2005) Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 26:114–146

    PubMed  CAS  Google Scholar 

  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    PubMed  CAS  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    PubMed  CAS  Google Scholar 

  • Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115:282–290

    PubMed  CAS  Google Scholar 

  • Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 347:175–184

    PubMed  CAS  Google Scholar 

  • Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276

    PubMed  CAS  Google Scholar 

  • Wu XB, Li Y, Schneider A, Yu W, Rajendren G, Iqbal J, Yamamoto M, Alam M, Brunet LJ, Blair HC, Zaidi M, Abe E (2003) Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112:924–934

    PubMed  CAS  Google Scholar 

  • Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82

    PubMed  CAS  Google Scholar 

  • Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T (2002) Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet 32:633–638

    PubMed  CAS  Google Scholar 

  • Yu PB, Beppu H, Kawai N, Li E, Bloch KD (2005) Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J Biol Chem 280:24443–24450

    PubMed  CAS  Google Scholar 

  • Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. Nature 423:343–348

    PubMed  CAS  Google Scholar 

  • Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109:1405–1415

    PubMed  CAS  Google Scholar 

  • Zheng SX, Vrindts Y, Lopez M, De Groote D, Zangerle PF, Collette J, Franchimont N, Geenen V, Albert A, Reginster JY (1997) Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 26:63–71

    PubMed  CAS  Google Scholar 

  • Zou H, Wieser R, Massague J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11:2191–2203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruber, R., Pietschmann, P., Peterlik, M. (2008). Introduction to Bone Development, Remodelling and Repair. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68604-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68604-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25888-9

  • Online ISBN: 978-3-540-68604-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics