25-Gauge Instrumentation: Engineering Challenges and Tradeoffs

  • A. C. Barnes
  • C. M. DeBoer
  • P. R. Bhadri
  • O. MagalhaesJr.
  • R. M. Kerns
  • M. T. McCormick
  • L. P. Chong
  • M. S. Humayun
Part of the Essentials in Ophthalmology book series (ESSENTIALS)
  • 25-gauge instrumentation has reduced the surgical incision size. This reduction in size has made vitreoretinal procedures not only sutureless but, more importantly, made the procedures less invasive and potentially safer.

  • The sutureless 25-gauge pars plana vitrectomy reduces the postoperative inflammation at sclerotomy sites, thus reducing patient discomfort after surgery and hastening postoperative recovery.

  • The majority of experienced vitreoretinal surgeons have now been exposed at some level to 25-gauge instrumentation, and many use it on a routine basis. However, only a few surgeons have experience with the engineering development challenges and tradeoffs associated with small-diameter instrumentation.

  • This chapter will explore some of the key areas of the design and functioning of small-diameter instruments, so that surgeons may better understand their performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Born M, Emil W (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expand edn. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Chen JC (1996) Sutureless pars plana vitrectomy through self-sealing sclerotomies. Arch Ophthalmol 114(10): 1273–1275PubMedGoogle Scholar
  3. 3.
    DeBoer C et al (2006) Vitreous removal rates and high-speed video analysis of 25-gauge vitrectomy cutters. ARVO Annual Meeting (2006) AbstractGoogle Scholar
  4. 4.
    Eckardt C (2005) Transconjunctival sutureless 23-gauge vitrectomy. Retina (Philadelphia, Pa.) 25(2):208–211Google Scholar
  5. 5.
    Fischer RE, Biljana T-G (2000) Optical system Design. McGraw Hill, New YorkGoogle Scholar
  6. 6.
    Flesch PG (2006) Light and light sources: high-intensity discharge lamps, 1st edn. Springer, Berlin New York HeidelbergGoogle Scholar
  7. 7.
    Fujii GY et al (2002) A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology 109(10):1807–1812; discussion 1813PubMedCrossRefGoogle Scholar
  8. 8.
    Fujii GY et al (2002) Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology 109(10):1814–1820PubMedCrossRefGoogle Scholar
  9. 9.
    Hasumura T et al (2000) Retinal damage by air infusion during vitrectomy in rabbit eyes. Invest Ophthalmol Vis Sci 41(13):4300–4304PubMedGoogle Scholar
  10. 10.
    Hirata A et al (2000) Effect of infusion air pressure on visual field defects after macular hole surgery. Am J Ophthalmol 130(5):611–616PubMedCrossRefGoogle Scholar
  11. 11.
    IESNA Light Sources Committee (1998) IESNA guide to choosing light sources for general lighting. Illuminating Engineering Society of North America, New YorkGoogle Scholar
  12. 12.
    Jackson T (2000) Modified sutureless sclerotomies in pars plana vitrectomy. Am J Ophthalmol 129(1) : 116–117PubMedCrossRefGoogle Scholar
  13. 13.
    de Juan E Jr, Hickingbotham D (1990) Refinements in microinstrumentation for vitreous surgery. Am J Ophthalmol 109(2):218–220PubMedGoogle Scholar
  14. 14.
    Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, Boston, MAGoogle Scholar
  15. 15.
    Kwok AK et al (1999) Modified sutureless sclerotomies in pars plana vitrectomy. Am J Ophthalmol 127(6):731–733PubMedCrossRefGoogle Scholar
  16. 16.
    Ladd BS et al (2003) Force comparison of air currents produced by a standard and modified infusion cannula. Retina 23(1):76–79PubMedCrossRefGoogle Scholar
  17. 17.
    Lam DS et al (2000) Sutureless pars plana anterior vitrectomy through self-sealing sclerotomies in children. Arch Ophthalmol 118(6):850–851PubMedGoogle Scholar
  18. 18.
    López-Higuera JM (2002) Handbook of optical fibre sensing technology. Wiley, New YorkGoogle Scholar
  19. 19.
    Mohan N, Tore MU, William PR (2003) Power electronics: converters, applications, and design, 3rd edn. Wiley, Hoboken, NJGoogle Scholar
  20. 20.
    Oshitari K et al (2001) Evaluation of retinal damage induced by air/fluid exchange using a trypan blue inclusion test in rabbits. Am J Ophthalmol 131(6):814–815PubMedCrossRefGoogle Scholar
  21. 21.
    Rahman R et al (2000) Self-sealing sclerotomies for sutureless pars plana vitrectomy. Ophthalmic Surg Lasers 31(6):462–426PubMedGoogle Scholar
  22. 22.
    Sabersky RH (1999) Fluid flow: a first course in fluid mechanics, 4th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  23. 23.
    Smith WJ (2005) Modern lens design, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Tomal, DR, Neal SW (2004) Electronic troubleshooting, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Vo-Dinh T (2003). Biomedical photonics handbook. CRC Press, Boca Raton, FAGoogle Scholar
  26. 26.
    Yonemura N et al (2003) Long-term alteration in the airinfused rabbit retina. Graefes Arch Clin Exp Ophthalmol 241(4):314–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. C. Barnes
    • 1
  • C. M. DeBoer
    • 1
  • P. R. Bhadri
    • 1
  • O. MagalhaesJr.
    • 1
  • R. M. Kerns
    • 1
  • M. T. McCormick
    • 1
  • L. P. Chong
    • 1
  • M. S. Humayun
    • 1
  1. 1.Eye Concepts, Doheny Eye InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations