25-Gauge Instrumentation: Engineering Challenges and Tradeoffs

  • A. C. Barnes
  • C. M. DeBoer
  • P. R. Bhadri
  • O. MagalhaesJr.
  • R. M. Kerns
  • M. T. McCormick
  • L. P. Chong
  • M. S. Humayun
Part of the Essentials in Ophthalmology book series (ESSENTIALS)
  • 25-gauge instrumentation has reduced the surgical incision size. This reduction in size has made vitreoretinal procedures not only sutureless but, more importantly, made the procedures less invasive and potentially safer.

  • The sutureless 25-gauge pars plana vitrectomy reduces the postoperative inflammation at sclerotomy sites, thus reducing patient discomfort after surgery and hastening postoperative recovery.

  • The majority of experienced vitreoretinal surgeons have now been exposed at some level to 25-gauge instrumentation, and many use it on a routine basis. However, only a few surgeons have experience with the engineering development challenges and tradeoffs associated with small-diameter instrumentation.

  • This chapter will explore some of the key areas of the design and functioning of small-diameter instruments, so that surgeons may better understand their performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born M, Emil W (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expand edn. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Chen JC (1996) Sutureless pars plana vitrectomy through self-sealing sclerotomies. Arch Ophthalmol 114(10): 1273–1275PubMedGoogle Scholar
  3. 3.
    DeBoer C et al (2006) Vitreous removal rates and high-speed video analysis of 25-gauge vitrectomy cutters. ARVO Annual Meeting (2006) AbstractGoogle Scholar
  4. 4.
    Eckardt C (2005) Transconjunctival sutureless 23-gauge vitrectomy. Retina (Philadelphia, Pa.) 25(2):208–211Google Scholar
  5. 5.
    Fischer RE, Biljana T-G (2000) Optical system Design. McGraw Hill, New YorkGoogle Scholar
  6. 6.
    Flesch PG (2006) Light and light sources: high-intensity discharge lamps, 1st edn. Springer, Berlin New York HeidelbergGoogle Scholar
  7. 7.
    Fujii GY et al (2002) A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology 109(10):1807–1812; discussion 1813PubMedCrossRefGoogle Scholar
  8. 8.
    Fujii GY et al (2002) Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology 109(10):1814–1820PubMedCrossRefGoogle Scholar
  9. 9.
    Hasumura T et al (2000) Retinal damage by air infusion during vitrectomy in rabbit eyes. Invest Ophthalmol Vis Sci 41(13):4300–4304PubMedGoogle Scholar
  10. 10.
    Hirata A et al (2000) Effect of infusion air pressure on visual field defects after macular hole surgery. Am J Ophthalmol 130(5):611–616PubMedCrossRefGoogle Scholar
  11. 11.
    IESNA Light Sources Committee (1998) IESNA guide to choosing light sources for general lighting. Illuminating Engineering Society of North America, New YorkGoogle Scholar
  12. 12.
    Jackson T (2000) Modified sutureless sclerotomies in pars plana vitrectomy. Am J Ophthalmol 129(1) : 116–117PubMedCrossRefGoogle Scholar
  13. 13.
    de Juan E Jr, Hickingbotham D (1990) Refinements in microinstrumentation for vitreous surgery. Am J Ophthalmol 109(2):218–220PubMedGoogle Scholar
  14. 14.
    Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, Boston, MAGoogle Scholar
  15. 15.
    Kwok AK et al (1999) Modified sutureless sclerotomies in pars plana vitrectomy. Am J Ophthalmol 127(6):731–733PubMedCrossRefGoogle Scholar
  16. 16.
    Ladd BS et al (2003) Force comparison of air currents produced by a standard and modified infusion cannula. Retina 23(1):76–79PubMedCrossRefGoogle Scholar
  17. 17.
    Lam DS et al (2000) Sutureless pars plana anterior vitrectomy through self-sealing sclerotomies in children. Arch Ophthalmol 118(6):850–851PubMedGoogle Scholar
  18. 18.
    López-Higuera JM (2002) Handbook of optical fibre sensing technology. Wiley, New YorkGoogle Scholar
  19. 19.
    Mohan N, Tore MU, William PR (2003) Power electronics: converters, applications, and design, 3rd edn. Wiley, Hoboken, NJGoogle Scholar
  20. 20.
    Oshitari K et al (2001) Evaluation of retinal damage induced by air/fluid exchange using a trypan blue inclusion test in rabbits. Am J Ophthalmol 131(6):814–815PubMedCrossRefGoogle Scholar
  21. 21.
    Rahman R et al (2000) Self-sealing sclerotomies for sutureless pars plana vitrectomy. Ophthalmic Surg Lasers 31(6):462–426PubMedGoogle Scholar
  22. 22.
    Sabersky RH (1999) Fluid flow: a first course in fluid mechanics, 4th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  23. 23.
    Smith WJ (2005) Modern lens design, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Tomal, DR, Neal SW (2004) Electronic troubleshooting, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Vo-Dinh T (2003). Biomedical photonics handbook. CRC Press, Boca Raton, FAGoogle Scholar
  26. 26.
    Yonemura N et al (2003) Long-term alteration in the airinfused rabbit retina. Graefes Arch Clin Exp Ophthalmol 241(4):314–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. C. Barnes
    • 1
  • C. M. DeBoer
    • 1
  • P. R. Bhadri
    • 1
  • O. MagalhaesJr.
    • 1
  • R. M. Kerns
    • 1
  • M. T. McCormick
    • 1
  • L. P. Chong
    • 1
  • M. S. Humayun
    • 1
  1. 1.Eye Concepts, Doheny Eye InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations