Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The exposure to radiation of patients undergoing computed tomography (CT) examinations is determined by two factors: equipment-related factors, i.e., design of the scanner with respect to dose efficiency, and application-related factors, i.e., the way in which the radiologist or the radiographer makes use of the scanner. In this chapter, the features and parameters influencing patient dose are outlined. First, however, a brief introduction on the dose descriptors applicable to CT is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks RA, DiChiro G (1976) Statistical limitations in X-ray reconstructive tomography. Med. Phys. 3:237–240

    Article  PubMed  CAS  Google Scholar 

  • Donnelly LF, Emery KH, Brody AS, Laor T, Gylys-Morin VM, Anton CG, Thomas SR, Frush DP (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR 176:303–306

    PubMed  CAS  Google Scholar 

  • European Commission (1999a) Guidance on diagnostic reference levels (DRLs) for medical exposures. Radiation Protection 109. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • European Commission (1999b) European guidelines on quality criteria for computed tomography. Report EUR 16262 EN. Office for Official Publications of the European Communities, Luxembourg, pp 69–78

    Google Scholar 

  • Flohr T, Stierstorferr K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Fortschr Roentgenstr 176:1803–1810

    Article  CAS  Google Scholar 

  • Galanski M, Nagel HD, Stamm G (2001) CT-Exposition-spraxis in der Bundesrepublik Deutschland-Ergebnisse einer bundesweiten Umfrage im Jahre 1999. Fortschr Roentgenstr 173:R1–R66

    Article  CAS  Google Scholar 

  • Honnef D, Wildberger JE, Stargardt A, Hohl C, Barker M, Günther RW, Staatz G (2004) Multislice spiral CT (MSCT) in pediatric radiology: dose reduction for chest and abdomen examinations (in German). Fortschr Roentgenstr 176:1021–1030

    Article  CAS  Google Scholar 

  • Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    PubMed  CAS  Google Scholar 

  • ICRP (International Commission on Radiological Protection) (1991) 1990 recommendations of the ICRP. Publication 60. Pergamon Press, Oxford

    Google Scholar 

  • ICRP (International Commission on Radiological Protection) (2001) Managing patient dose in computed tomography. Publication 88, Annals of the ICRP Vol 31, No 2. Pergamon Press, Oxford

    Google Scholar 

  • IEC (International Electrotechnical Commission) (1999) Medical electrical equipment — Part 2: Particular requirements for the safety of X-ray equipment for computed tomography. IEC standard 60601-2-44. IEC, Geneva

    Google Scholar 

  • IEC (International Electrotechnical Commission) (2001) Medical Electrical Equipment — Part 2: Particular requirements for the safety of X-ray equipment for computed tomography. IEC-Standard 60601-2-44 Ed. 2.0. IEC, Geneva

    Google Scholar 

  • ImPACT (2004) Evaluation Report MHRA 04048: Sixteen slice CT scanner comparison report version 12. Medicine and Healthcare Products Regulatory Agency, London, pp 7–9

    Google Scholar 

  • ImPACT (2005) Report 05016: CT scanner automatic exposure control systems. Medicine and Healthcare Products Regulatory Agency, London

    Google Scholar 

  • Kalender WA (2000) Computertomographie — Grundlagen, Gerätetechnologie, Bildqualität, Anwendungen. Publicis MCD-Verlag, München, pp 127–128

    Google Scholar 

  • Nagel HD (1986) Aluminium equivalence of materials used in diagnostic radiology and its dependence on beam quality. Phys. Med. Biol. 31:1381–1399

    Article  PubMed  CAS  Google Scholar 

  • Nagel HD (1989) Comparison of performance characteristics of conventional and K-edge filters in general diagnostic radiology. Phys. Med. Biol. 34:1269–1287

    Article  Google Scholar 

  • Nagel HD (2005) Significance of overbeaming and over-ranging effects of single-and multi-slice CT scanners. In: Proc. 14th International Conference of Medical Physics, Nuremberg, pp 395–396

    Google Scholar 

  • Nagel HD (ed), Galanski M, Hidajat N, Schmidt T, Maier W (2002) Radiation exposure in computed tomography — fundamentals, influencing parameters, dose assessment, optimisation, scanner data, terminology, 4th revised and updated edition. CTB-Publications, Hamburg (contact: ctb-publications@gmx.de)

    Google Scholar 

  • Prokop M, Schäfer-Prokop CM, Galanski M (1998) Dose reduction vs. image quality in spiral CT: How far down can we go in clinical practice? In: Krestin GP, Glazer GM (eds.). Advances in CT IV. Springer Verlag, Berlin: pp 16–26

    Google Scholar 

  • Rogalla P (2004) Personal communication

    Google Scholar 

  • Schneider K (2004) Personal communication

    Google Scholar 

  • Shope TB, Gagne RM, Johnson GC (1981) A method for describing the doses delivered by transmission X-ray computed tomography. Med. Phys. 8:488–495

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton PC and Wall B (2000) Reference doses for paediatric computed tomography. Radiation Protection Dosimetry 90:249–252

    Google Scholar 

  • Stamm G, Nagel HD (2002) CT-Expo — a novel program for dose evaluation in CT (in German). Fortschr Roentgenstr 174:1570–1576

    Article  CAS  Google Scholar 

  • Tack D, Gevenois PA (2006) Comparison of the performance characteristics of five programs for patient dose assessment in computed tomography. Submitted to Eur. Radiol.

    Google Scholar 

  • Taguchi K, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med. Phys. 25:550–561

    Article  PubMed  CAS  Google Scholar 

  • van der Haar T, Klingenbeck-Regn K, Hupke R (1998) Improvement of CT performance by UFC detector technology. In: Krestin GP, Glazer GM (eds). Advances in CT IV. Springer Verlag, Berlin, pp 9–15

    Google Scholar 

  • Vlassenbroek A (2004) Dose management in pediatric examinations. In: Proc. 2nd Philips CT user meeting, Barcelona, pp 39–44

    Google Scholar 

  • Wilting JE, Zwartkruis A, van Leeuwen MS, Timmer J, Kamphuis AGA, Feldberg M (2001) A rational approach to dose reduction in CT: individualized scan protocols. Eur Radiol 11:2627–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagel, H.D. (2007). CT Parameters that Influence the Radiation Dose. In: Tack, D., Gevenois, P.A. (eds) Radiation Dose from Adult and Pediatric Multidetector Computed Tomography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68575-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68575-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28888-6

  • Online ISBN: 978-3-540-68575-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics