Spatial Simulation of Agricultural Practices using a Robust Extension of Randomized Classification Tree Algorithms

  • J. Stéphane Bailly
  • Anne Biarnes
  • Philippe Lagacherie
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In this paper, extensions of the classification tree algorithm and analysis for spatial data are proposed. These extensions focus on: (1) a robust manner to prune a classification tree to smooth sampling (e.g., spatial sampling effects), (2) an assessment of tree spatial prediction performances with respect to its ability to satisfactorily represent the actual spatial distribution of the variable of interest, and (3) a unified framework to aid in the interpretation of the classification tree results due to variable correlations. These methodological developments are studied on an agricultural practices classification problem at an agricultural plot scale, specifically, the weed control practices on vine plots over a 75 km2 catchment in the South of France. The results show that, with these methodological developments, we obtain an explicit view of the uncertainty associated with the classification process through the simulation of the spatial distribution of agricultural practices. Such an approach may further facilitate the assessment of model sensitivities to categorical variable map uncertainties when using these maps as input data in environmental impact assessment modelling.

Keywords

CART uncertainties stochastic spatial simulation robustness predictors correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, B., Kromrey, J. D., & Ferron, J. M. (1998). Equating r-based and d-based effect-size indices: Problems with a commonly recommended formula. Annual meeting of the Florida Educational Research Association, Orlando, FL., ERIC Document Reproduction Service No. ED433353.Google Scholar
  2. Aubry C., Papy F. and Capillon A. (1998). Modelling decision-making process for annual crop management. Agricultural Systems 56(1): 45-65.CrossRefGoogle Scholar
  3. Bel L., Laurent J.M. , Bar-Hen A., Allard D. and Cheddadi R. (2005). A spatial extension of CART: application to classification of ecological data, Geostatistics for environmental applications, Springer: Heidelberg, 99-109.Google Scholar
  4. Biarnès A., Rio P. and Hocheux A. (2004). Analysing the determinants of spatial distribution of weed contol practices in a Languedoc vineyard catchment. Agronomie, 24: 187-191.CrossRefGoogle Scholar
  5. Bonfils P. (1993). Carte pédologique de France au 1/100°000 ; feuille de Lodève, SESCPF INRA.Google Scholar
  6. Breiman L., Friedman J. H., Olshen R. A. and Stone C. J. (1984). Classification and Regression Tree. London, Chapman and Hall, 358 p.Google Scholar
  7. Breiman L. (1996a). Bagging predictors. Machine learning 26(2): 123-140.Google Scholar
  8. Breiman L. (1996b). Random forest. Machine learning 45: 5-32.Google Scholar
  9. Bui, E., and Moran, C. (2001). Disaggregation of polygons of superficial geology and soil maps using spatial modelling and legacy data. Geoderma, 103: 79-94.CrossRefGoogle Scholar
  10. Chiffoleau Y. (2005). Learning about innovation through networks: the development of environment-friendly viticulture. Technovation 25(10): 1193-1204.CrossRefGoogle Scholar
  11. Cohen J. (1960). A coefficient of agreement for nominal scales, Educational and Psychological Measurement 20: 37–46.CrossRefGoogle Scholar
  12. Espa, G., Benedetti, R., De Meo, A., U. Ricci and Espa S. (2006). GIS based models and estimation methods for the probability of archaeological site location Journal of Cultural Heritage, 7(3), July,147-155CrossRefGoogle Scholar
  13. Fearer, T.M., Prisley, S.P., Stauffer; D.F., and Keyser P.D (2007). A method for integrating the Breeding Bird Survey and Forest Inventory and analysis databases to evaluate forest bird–habitat relationships at multiple spatial scales. Forest Ecology and Management, 243(1), 128-143CrossRefGoogle Scholar
  14. Gellrich, M., Baur, P., Robinson, B.H. and Bebi P. (2008). Combining classification tree analyses with interviews to study why sub-alpine grasslands sometimes revert to forest: A case study from the Swiss Alps, Agricultural Systems, 96(1-3), 124-138CrossRefGoogle Scholar
  15. Geurts P., Ernst D. and Wehenkel L. (2006). Extremely randomized trees. Machine learning 63: 3 - 42.CrossRefGoogle Scholar
  16. Gini C. (1912). Variabilità e mutabilità. Memorie di metodologica statistica. Vol. 1, E. Pizetti and T. Salvemini. Rome, Libreria Eredi Virgilio Veschi, pp 211-382Google Scholar
  17. Goovaerts P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma 103: 3-26.CrossRefGoogle Scholar
  18. Haase, R.C. (1983). Classical and Partial Eta Square in Multifactor ANOVA Designs. Educational and Psychological Measurement, 43(1), 35-39.CrossRefGoogle Scholar
  19. Hébrard O., Voltz M., Andrieux P. and Moussa R. (2006). Spatio-temporal distribution of soil surface moisture in a heterogeneously farmed Mediterranean catchment. Journal of Hydrology 329: 110-121.CrossRefGoogle Scholar
  20. Ihaka R. and Gentleman R. (1996). R: A Language for Data Analysis and Graphics,. Journal of Computational and Graphical Statistics 5(3): 299-314.CrossRefGoogle Scholar
  21. Lagacherie, P. and Holmes, S. (1997). Addressing geographical data errors in a classification tree for soil unit prediction. Int. J. Geographical Info. Sci. 11, pp. 183–198CrossRefGoogle Scholar
  22. Lennartz B., Louchard X., Voltz M. and Andrieux P. (1997). Diuron and simazine losses to runoff water in mediterranean vineyards. Journal of Environmental Quality 26(6): 1493-1502.Google Scholar
  23. Leonard J. and Andrieux P. (1998). Infiltration characteristics of soils in Mediterranean vineyards in Southern France. Catena 32: 209-223.CrossRefGoogle Scholar
  24. Louchart X., Voltz M., Andrieux P. and Moussa R. (2001). Herbicide Transport to Surface Waters at Field and Watershed Scales in a Mediterranean Vineyard Area. Journal of Environmental Quality 30: 982-991.CrossRefGoogle Scholar
  25. McDonald, R.I., Urban, D.L. (2006). Spatially varying rules of landscape change: lessons from a case study, Landscape and Urban Planning, 74(1), 7-20.CrossRefGoogle Scholar
  26. Mahalanobis P. C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Science of India 12: 49-55.Google Scholar
  27. Ripley B. (2007). Pattern recognition and neural Networks. Cambrige, Cambridge University Press, 415 p.Google Scholar
  28. Schröder W., (2006). GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology, International Journal of Medical Microbiology, Volume 296(1-22 ), 23-36.CrossRefGoogle Scholar
  29. Tittonell, P., Shepherd, K.D. , Vanlauwe, B. and Giller, K.E. (2008) Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis, Agriculture, Ecosystems & Environment, 123(1-3), 137-150.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Stéphane Bailly
    • 1
  • Anne Biarnes
    • 1
  • Philippe Lagacherie
    • 1
  1. 1.UMR INRA-IRD-SupAgro LISAH, Campus de la GaillardeFrance

Personalised recommendations