Skip to main content

Solid-liquid phase change materials

  • Chapter

Part of the book series: Heat and Mass Transfer ((HMT))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhat A.: Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, vol. 30, no. 4, 313-332 (1983)

    Article  CAS  Google Scholar 

  2. Atkins P.W., de Paula J.: Physical chemistry. Oxford University Press, Oxford (2002) 7th edition, ISBN 0-19-879285-9

    Google Scholar 

  3. BASF AG. Ludwigshafen, Germany. www.micronal.de

    Google Scholar 

  4. Bauer T., Tamme R., Christ M., Öttinger O.: PCM-graphite composites for high temperature thermal energy storage. Proc. of ECOSTOCK, 10th International Conference on Thermal Energy Storage, Stockton, USA, 2006

    Google Scholar 

  5. Boese R., Weiβ H.-C., Bläser D.: The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K. Angew. Chem. Int. Ed. 38, No. 7, 988-992 (1999)

    Article  CAS  Google Scholar 

  6. Brown E.N., Kessler M.R., Sottos N.R., White S.R.: In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsulation 20, 719-730 (2003)

    Article  CAS  Google Scholar 

  7. Cabeza L., Mehling H., Hiebler S., Ziegler F.: Heat transfer enhancement in water when used as PCM in thermal energy storage. Applied Thermal Engineering 22, 1141 –1151 (2002)

    Article  CAS  Google Scholar 

  8. Climator AB. Skovde, Sweden. http://www.climator.com

    Google Scholar 

  9. CRISTOPIA Energy Systems. Vence, France. http://www.cristopia.com

    Google Scholar 

  10. Dörken GmbH & Co. KG. Herdecke, Germany. www.doerken.de

    Google Scholar 

  11. do Couto Aktay K. S., Tamme R., Müller-Steinhagen H.: PCM-Graphite Storage Materials for the Temperature Range 100-300 ˆC. Proc. of Second Conference on Phase Change Material & Slurry: Scientific Conference & Business Forum, , Yverdon-les-Bains, Switzerland, 15 – 17 June 2005

    Google Scholar 

  12. Farid M.M., Khudhair A.M., Razack S.A.K., Al-Hallaj S.: A review on phase change energy storage: materials and applications. Energy Conversion and Management 45, 1597–1615 (2004)

    Article  CAS  Google Scholar 

  13. Günther E., Mehling H., Werner M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D: Appl. Phys. 40, 4636–4641 (2007)

    Article  Google Scholar 

  14. Hackeschmidt K, Khelifa N, Girlich D.: Verbesserung der Nutzbaren Wärmeleitung in Latentspeichern durch offenporige Metallschäume, KI Kälte – Luft – Klimatechnik, 33-36 (2007)

    Google Scholar 

  15. Hafner B., Schwarzer K.: Improvement of the Heat Transfer in a Phase-Change-Material Storage. Presented at 4th Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Benediktbeuern, Germany, 28.-29. Oktober 1999. www.fskab.com/annex10

    Google Scholar 

  16. He B., Gustafsson M., Setterwall F.: Paraffin Waxes and Their Binary Mixture as Phase Change Materials (PCMs) for Cool Storage in District Cooling System. Presented at 1st Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Adana, Turkey, 16-17 April 1998. www.fskab.com/annex10

    Google Scholar 

  17. He B., Gustafsson E.M., Setterwall F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling system. Energy 24, 1015-1028 (1999)

    Article  Google Scholar 

  18. Herlach D.M.: Solidification and Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA (2004) , isbn 3-527-31011-8

    Google Scholar 

  19. Hiebler S., Mehling H.: Latent-Kältespeicherung ohne Eis: Überblick über Materialien und Anwendungen. Proc. of Deutsche Kälte-Klima-Tagung, Ulm, 2001

    Google Scholar 

  20. Hong S.-T., Herling D.R.: Open-cell aluminum foams filled with phase change materials as compact heat sinks. Scripta Materialia, Vol. 55, Issue 10, 887-890 (2006)

    Article  CAS  Google Scholar 

  21. Inaba H., Tu P.: Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat and Mass Transfer 32, 307-312 (1997)

    Article  CAS  Google Scholar 

  22. Jahns E.: Microencapsulated Phase Change Material. Presented at 4th Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Benediktbeuern, Germany, 28.-29. Oktober 1999. www.fskab.com/annex10

    Google Scholar 

  23. Kakiuchi H., Yamazaki M., Yabe M., Chihara S., Terunuma Y., Sakata Y.: A study of erythritol as phase change material. Presented at 2nd Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Sofia, Bulgaria, 11–13 April 1998. www.fskab.com/annex10

    Google Scholar 

  24. Kashchiev D.: Nucleation - Basic Theory with Applications. Butterworth Heinemann (2000), isbn 0-7506-4682-9

    Google Scholar 

  25. Kenisarin M., Mahkamov K.: Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, Vol.11 (9), 1913-1965 (2007)

    Article  CAS  Google Scholar 

  26. Kurz W., Fisher D.J.: Fundamentals of Solidification. Trans Tech Publications (1992),3rd edition, isbn 0-87849-522-3

    Google Scholar 

  27. Lane G.A.: Solar Heat Storage: Latent Heat Material - Volume I: Background and Scientific Principles. CRC Press, Florida (1983)

    Google Scholar 

  28. Lane G.A.: Solar Heat Storage: Latent Heat Material - Volume II: Technology. CRC Press, Florida (1986)

    Google Scholar 

  29. Lindner F.: Latentwärmespeicher - Teil 1: Physikalisch-technische Grundlagen. Brennst.-Wärme-Kraft 36, Nr. 7-8 (1984)

    Google Scholar 

  30. Mehling H., Hiebler S., Ziegler F.: Latent heat storage using a PCM-graphite composite material: advantages and potential applications. Presented at 4th Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Benediktbeuern, Germany, 28.-29. Oktober 1999. www.fskab.com/annex10

    Google Scholar 

  31. Mehling H., Hiebler S., Ziegler F.: Latent heat storage using a PCM-graphite composite material. Proc. of TERRASTOCK 2000, Stuttgart, 28.8-1.9.2000

    Google Scholar 

  32. Mehling H.: Latentwärmespeicher – Neue Materialien und Materialkonzepte. Proc. of FVS Workshop ’Wärmespeicherung’, DLR Köln, 28th - 29th May 2001. http://www.fv-sonnenenergie.de/Publikationen/index.php?id=5&list=23

    Google Scholar 

  33. Microtek Laboratories. Dayton, USA. http://www.microteklabs.com

    Google Scholar 

  34. Mills A., Farid M., Selman J.R., Al-Hallaj S.: Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering 26, 1652–1661 (2006)

    Article  CAS  Google Scholar 

  35. Mutaftschiev B.: Nucleation Theory. In: Hurle D.T.J. (ed.): Handbook of Crystal Growth. Elsevier Science Publishers B.V., 187-247 (1993), ISBN 0-444-89933-2

    Google Scholar 

  36. Nagano K., Mochida T., Iwata K., Hiroyoshi H., Domanski R.: Thermal Performance of Mn(NO3)2·6H2O as a New PCM for Cooling System. Presented at 5th Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Tsu, Japan, 12-14 April 2000. www.fskab.com/annex10

    Google Scholar 

  37. Neuschütz M.: High performance latent heat battery for cars. Presented at 3th Workshop IEA ECES Annex 10 “Phase change materials and chemical reactions for thermal energy storage”, Helsinki, Finland, May 1999. www.fskab.com/annex10

    Google Scholar 

  38. Nikolić R., Marinović-Cincović M., Gadžurić S., Zsigraib I.J.: New materials for solar thermal storage - solid/liquid transitions in fatty acid esters. Solar Energy Materials & Solar Cells 79, 285–292 (2003)

    Article  Google Scholar 

  39. Özonur Y., Mazman M., Paksoy H. Ö., Evliya H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research 30, 741-749 (2006)

    Article  Google Scholar 

  40. Oyama H., Shimada W., Ebinuma T., Kamata Y., Takeya S., Uchida T., Nagao J., Narita H.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria 234, 131–135 (2005)

    Article  CAS  Google Scholar 

  41. Phase Change Products Pty Ltd, short PCP. Perth, Australia. http://www.pcpaustralia.com.au/index.html

    Google Scholar 

  42. Pimpinelli A., Villain J.: Physics of Crystal Growth. Cambridge University Press (1998), isbn 0-521-55198-6

    Google Scholar 

  43. Py X., Olives R., Mauran S.: Paraffin / porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of heat and mass transfer 44, 2727-2737 (2001)

    Article  CAS  Google Scholar 

  44. Rogerson M., Cardoso S.: Solidification in Heat Packs: I. Nucleation Rate. AIChE Journal, Vol. 49, No. 2, 505-515 (2003)

    Article  CAS  Google Scholar 

  45. Rogerson M., Cardoso S.: Solidification in Heat Packs: II. Role of Cavitation. AIChE Journal, Vol. 49, No. 2, 515-521 (2003)

    Google Scholar 

  46. Rogerson M., Cardoso S.: Solidification in Heat Packs: III. Metallic Trigger; AIChE Journal, Vol. 49, No. 2, 522-529 (2003)

    Article  CAS  Google Scholar 

  47. Royon L., Guiffant G., Flaud P.: Investigation of heat transfer in a polymeric phase change material for low level heat. Energy Convers 38, 517–24 (1997)

    Article  CAS  Google Scholar 

  48. Rubitherm Technologies GmbH. Berlin, Germany. http://www.rubitherm.com

    Google Scholar 

  49. Sari A., Kaygusuz K.: Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling. Renewable Energy, Volume 28, Issue 6, 939-948 (2003)

    Article  CAS  Google Scholar 

  50. Satzger P., Eska B, Ziegler F.: Matrix-heat-exchanger for latent-heat cold-storage; Proc. of 7th International conference on thermal energy storage (1997)

    Google Scholar 

  51. Schröder J.: Some Materials and Measures to Store Latent Heat. Proc. of IEA Workshop on “Latent heat stores – Technology and applications”, Stuttgart, 1985

    Google Scholar 

  52. SGL TECHNOLOGIES GmbH. Meitingen, Germany. www.sglcarbon.com/eg

    Google Scholar 

  53. Sharma S.D., Kitano H., Sagara K.: Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ., Vol. 29, 31-64 (2004)

    CAS  Google Scholar 

  54. Steiner D., Heine D., Heess F.: Untersuchung von Mittel- und Hochtemperatur Latentwärmespeicher Materialien. Schlussbericht BMFT ET 4335 (1980)

    Google Scholar 

  55. Tunçbilek K., Sari A., Tarhan S., Ergüneş G., Kaygusuz K.: Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications. Energy 30, 677–692 (2005)

    Article  Google Scholar 

  56. Velraj R., Seeniraj R.V., Hafner B., Faber C., Schwarzer K.: Heat transfer enhancement in a latent heat storage system. Solar Energy, vol. 65, No. 3, 171–180 (1999)

    Article  CAS  Google Scholar 

  57. Voigt W.: Calculation of salt activities in molten salt hydrates applying the modified BET equation, I: Binary systems. Monatshefte für Chemie 124, 839-848 (1993)

    Article  CAS  Google Scholar 

  58. Xiao R., Wu S., Tang L., Huang C., Feng Z.: Experimental investgaton of the pressure drop of clathrate hydrate slurry (CHS) flow of Tetra Butyl Ammonium Bromide (TBAB) in straight pipe. Proc. of ECOSTOCK, 10th International Conference on Thermal Energy Storage, Stockton, USA, 2006

    Google Scholar 

  59. Zhang Yinping, Zhou Guobing, Yang Ruib Lin Kunpinga: Our Research on Shape-stabilized PCM in Energy-efficient Buildings; Proc. of ECOSTOCK, 10th International Conference on Thermal Energy Storage, Stockton, USA, 2006

    Google Scholar 

  60. Zalba B., Marin J.M., Cabeza L.F., Mehling H.: Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied thermal Engineering 23, 251 – 283 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehling, H., Cabeza, L.F. (2008). Solid-liquid phase change materials. In: Heat and cold storage with PCM. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68557-9_2

Download citation

Publish with us

Policies and ethics