Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem

  • Marcelo C. Couto
  • Cid C. de Souza
  • Pedro J. de Rezende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5038)

Abstract

We consider the Orthogonal Art Gallery problem (oagp) whose goal is to minimize the number of vertex guards required to watch an art gallery whose boundary is an n-vertex orthogonal polygon P. Here, we explore an exact algorithm for oagp, which we proposed in [1], that iteratively computes optimal solutions to Set Cover problems (scps) corresponding to discretizations of P. While it is known [1] that this procedure converges to an exact solution of the original continuous problem, the number of iterations executed is highly dependent on the way we discretize P. Although the best theoretical bound for convergence is Θ(n3) iterations, we show that, in practice, it is achieved after only a few of them, even for random polygons of hundreds of vertices. As each iteration involves the solution of an scp, the strategy for discretizing P is of paramount importance. In this paper, we carry out an extensive empirical investigation with five alternative discretization strategies to implement the algorithm. A broad range of polygon classes is tested. As a result, we are able to significantly improve the performance of the algorithm, while maintaining low execution times, to the point that we achieve a fivefold increase in polygon size, compared to the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm for the orthogonal art gallery problem. In: Proc. of the XX Brazilian Symp. on Comp. Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  2. 2.
    Honsberger, R.: Mathematical Gems II. Number 2 in The Dolciani Mathematical Expositions. Mathematical Association of America (1976)Google Scholar
  3. 3.
    Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory Series B 18, 39–41 (1975)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)CrossRefGoogle Scholar
  5. 5.
    Kahn, J., Klawe, M.M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-polygons. Mathematical Logic Quarterly 41, 261–267 (1995)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Sack, J.R., Toussaint, G.T.: Guard placement in rectilinear polygons. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 153–175. North-Holland, Amsterdam (1988)Google Scholar
  8. 8.
    Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art galleries. Comput. Vision Graph. Image Process. 27, 167–176 (1984)CrossRefGoogle Scholar
  9. 9.
    Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proc. Canadian Inform. Process. Soc. Congress (1987)Google Scholar
  10. 10.
    Eidenbenz, S.: Approximation algorithms for terrain guarding. Inf. Process. Lett. 82(2), 99–105 (2002)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. In: Proc. Workshop on Algorithm Eng. and Experiments, pp. 1–15 (2007)Google Scholar
  12. 12.
    Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)CrossRefGoogle Scholar
  13. 13.
    Tomás, A.P., Bajuelos, A.L., Marques, F.: On visibility problems in the plane - solving minimum vertex guard problems by successive approximations. In: Proc. of the 9th Int. Symp. on Artificial Intelligence and Mathematics (2006)Google Scholar
  14. 14.
    Couto, M.C., de Souza, C.C., de Rezende, P.J.: OAGPLIB - Orthogonal art gallery problem library, www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery/
  15. 15.
    Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: M.H.G., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implem. Challenges, AMS, Providence, pp. 215–250 (2002)Google Scholar
  16. 16.
    McGeoch, C.C., Moret, B.M.E.: How to present a paper on experimental work with algorithms. SIGACT News 30 (1999)Google Scholar
  17. 17.
    Sanders, P.: Presenting data from experiments in algorithmics, pp. 181–196. Springer, New York (2002)CrossRefGoogle Scholar
  18. 18.
    Moret, B.: Towards a discipline of experimental algorithmics. In: Proc. 5th DIMACS ChallengeGoogle Scholar
  19. 19.
    Lee, D.T.: Visibility of a simple polygon. Comput. Vision, Graphics, and Image Process 22, 207–221 (1983)CrossRefMATHGoogle Scholar
  20. 20.
    Joe, B., Simpson, R.B.: Visibility of a simple polygon from a point. Report CS-85-38, Dept. Math. Comput. Sci., Drexel Univ., Philadelphia, PA (1985)Google Scholar
  21. 21.
    Joe, B., Simpson, R.B.: Correction to Lee’s visibility polygon algorithm. BIT 27, 458–473 (1987)CrossRefMATHGoogle Scholar
  22. 22.
    Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Computational Geometry 23(3), 313–335 (2002)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Tomás, A.P., Bajuelos, A.L.: Generating random orthogonal polygons. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, pp. 120–121. John Wiley & Sons, Chichester (1990)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcelo C. Couto
    • 1
  • Cid C. de Souza
    • 1
  • Pedro J. de Rezende
    • 1
  1. 1.Instituto de ComputaçãoUniversidade Estadual de Campinas — CampinasBrazil

Personalised recommendations