Advertisement

Testing Systems Specified as Partial Order Input/Output Automata

  • Gregor v. Bochmann
  • Stefan Haar
  • Claude Jard
  • Guy-Vincent Jourdan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5047)

Abstract

An Input/Output Automaton is an automaton with a finite number of states where each transition is associated with a single inpuf or output interaction. In [1], we introduced a new formalism, in which each transition is associated with a bipartite partially ordered set made of concurrent inputs followed by concurrent outputs. In this paper, we generalize this model to Partial Order Input/Output Automata (POIOA), in which each transition is associated with an almost arbitrary partially ordered set of inputs and outputs. This formalism can be seen as High-Level Messages Sequence Charts with inputs and outputs and allows for the specification of concurrency between inputs and outputs in a very general, direct and concise way. We give a formal definition of this framework, and define several conformance relations for comparing system specifications expressed in this formalism. Then we show how to derive a test suite that guarantees to detect faults defined by a POIOA-specific fault model: missing output faults, unspecified output faults, weaker precondition faults, stronger precondition faults and transfer faults.

Keywords

Testing distributed systems partial order finite state automata conformance relations partial order automata HMSC 

References

  1. 1.
    Haar, S., Jard, C., Jourdan, G.V.: Testing Input/Output Partial Order Automata. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 171–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3), 219–246 (1989)MathSciNetMATHGoogle Scholar
  3. 3.
    Mauw, S., Reniers, M.: High-level Message Sequence Charts. In: Cavalli, A., Sarma, A. (eds.) Proceedings of the Eight SDL Forum, SDL 1997. Time for Testing - SDL MSC and Trends, Evry, France, September 23-26, 1997, pp. 291–306 (1997)Google Scholar
  4. 4.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theor. Comput. Sci. 331(1), 97–114 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Mooij, A., Romijn, J., Wesselink, W.: Realizability criteria for compositional MSC. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Mooij, A.J., Goga, N., Romijn, J.: Non-local choice and beyond: Intricacies of MSC choice nodes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Castejón, H.N., Bræk, R., Bochmann, G.V.: Realizability of Collaboration-based Service Specification. In: APSEC conference (November 2007)Google Scholar
  8. 8.
    Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Programming Languages & Systems 17(3), 507–534 (1995)CrossRefGoogle Scholar
  9. 9.
    Bochmann, G.v.: Submodule construction for specifications with input assumptions and output guarantees. In: FORTE 2002, Chapman & Hall, Boca Raton (2002)Google Scholar
  10. 10.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics (51), 161–166 (1950)Google Scholar
  11. 11.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines – a survey. Proceedings of the IEEE 84(8), 1089–1123 (1996)CrossRefGoogle Scholar
  12. 12.
    Gouda, M.G., Yu, Y.-T.: Synthesis of communicating Finite State Machines with guaranteed progress. IEEE Trans on Communications Com-32(7), 779–788 (1984)CrossRefMATHGoogle Scholar
  13. 13.
    Luo, G., Dssouli, R., Bochmann, G.v., Ventakaram, P., Ghedamsi, A.: Generating synchronizable test sequences based on finite state machines with distributed ports. In: Proceedings of the IFIP Sixth International Workshop on Protocol Test Systems, Pau, France, September 1993, pp. 53–68 (1993)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Gregor v. Bochmann
    • 1
  • Stefan Haar
    • 2
  • Claude Jard
    • 3
  • Guy-Vincent Jourdan
    • 1
  1. 1.School of Information Technology and Engineering (SITE)University of OttawaOttawaCanada
  2. 2.IRISA/INRIARennesFrance
  3. 3.ENS Cachan, IRISAUniversité Européenne de BretagneBruzFrance

Personalised recommendations