Advertisement

How to determine long-term changes in marine climate

  • Ralf Weisse
  • Hans von Storch
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

So far we have reviewed the dynamics of the global climate system, the marine weather phenomena this book is about—in particular, storms, wind waves, and storm surges—and how to mathematically describe these phenomena. In this chapter, we address the question on how to determine long-term changes in the statistics of marine weather phenomena.

Keywords

Wind Speed Tropical Cyclone Storm Surge German Bight Anthropogenic Climate Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersson, H.; and A. Moberg (1997). Homogenization of Swedish temperature data, Part I: Homogeneity test for linear trends. Int. J. Climatol., 17, 25–34.CrossRefGoogle Scholar
  2. Alexandersson, H.; T. Schmith; K. Iden; and H. Tuomenvirta (1998). Long-term variations of the storm climate over NW Europe. Global Atmos. Oc. System, 6, 97–120.Google Scholar
  3. Alexandersson, H.; H. Tuomenvirta; T. Schmith; and K. Iden (2000). Trends of storms in NW Europe derived from an updated pressure data set. Climate Res., 14, 71–73.CrossRefGoogle Scholar
  4. Auer, I.; R. Boehm; A. Jurkovic; W. Lipa; A. Orlik; R. Potzmann; W. Schoener; M. Ungersboeck; C. Matulla; K. Briffa et al. (2005). HISTALP historical instrumental climatological surface time series of the greater alpine region. Int. J. Climatol., 17, 14–46.Google Scholar
  5. Bärring, L.; and K. Fortuniak (2009). Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal variations in the NW Europe-North Sea region. Int. J. Climatol., 29, 373–384, doi: 10.1002/joc.1842.CrossRefGoogle Scholar
  6. Bärring, L.; and H. von Storch (2004). Scandinavian storminess since about 1800. Geophys. Res. Lett., 31, L20202, doi: 10.1029/2004GL020441.CrossRefGoogle Scholar
  7. Behringer, W. (2005). The global ocean data assimilation system (GODAS) at NCEP. In: Preprints, 11th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface. American Meteorological Society. Available at http://ams.confex.com/ams/pdfpapers/119541.pdf Google Scholar
  8. Bell, M.; J. Martin; and N. Nichols (2004). Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteorol. Soc., 130, 853–871.CrossRefGoogle Scholar
  9. Bellucci, A.; S. Masina; P. Di Pietro; and A. Navarra (2007). Using temperature-salinity relations in a global ocean implementation of a multivariate dataassimilation scheme. Mon. Wea. Rev., 135, 3785–3807.CrossRefGoogle Scholar
  10. Bengtsson, L.; S. Hagemann; and K. Hodges (2004). Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, doi: 10.1029/2004JD004536.Google Scholar
  11. Bhend, J.; and H. von Storch (2007). Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Climate Dyn., 31, 17–28, doi: 10.1007/s00382-007-0335-9.CrossRefGoogle Scholar
  12. Bhend, J.; and H. von Storch (2009). Is greenhouse gas forcing a plausible explanation for the observed warming in the Baltic Sea catchment area? Boreal Environ Res., 14, 81–88.Google Scholar
  13. Black, D.; M. Abahazi; R. Thunell; A. Kaplan; E. Tappa; and L. Peterson (2007). An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, 20th-century warming, and Atlantic hurricane frequency. Paleooceanography, 22, PA4204, doi: 10.1029/2007PA001427.CrossRefGoogle Scholar
  14. Bray, D.; C. Hagner; and I. Grossmann (2003). Grey, Green, Big Blue: Three Regional Development Scenarios Addressing the Future of Schleswig-Holstein, Technical Report 2003/25. GKSS Research Center, Geesthacht, Germany.Google Scholar
  15. Bromwich, D.; R. Fogt; K. Hodges; and J. Walsh (2007). Tropospheric assessment of ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., D11111, doi: 10.1029/2006JD007859.Google Scholar
  16. Caires, S.; and A. Sterl (2005). 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Climate, 18, 1032–1048.CrossRefGoogle Scholar
  17. Caires, S.; A. Sterl; and C. Gommenginger (2005). Global ocean mean wave period data: Validation and description. J. Geophys. Res., 110, C02003, doi: 10.1029/2004JC002631.CrossRefGoogle Scholar
  18. Carton, J.; and B. Giese (2008). A reanalysis of ocean climate using simple data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.CrossRefGoogle Scholar
  19. Carton, J.; and A. Santorelli (2008). Global decdal upper-ocean heat content as viewed in nine analyses. J. Climate, 21, 6015–6035, doi: 10.1175/2008JCLI2489.1.CrossRefGoogle Scholar
  20. Cieslikiewicz, W.; and B. Paplinska-Swerpel (2008). A 44-year hindcast of wind wave fields over the Baltic Sea. Coastal Eng., 894–905, doi: 10.1016/j.coastaleng.2008.02.017.Google Scholar
  21. Compo, G.; J. Whitaker; and P. Sardeshmukh (2006). Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteorol. Soc., 87, 175–190, doi: 10.1175/BAMS-87-2-175.CrossRefGoogle Scholar
  22. Cox, A.; and V. Swail (2001). A global wave hindcast over the period 1958–1997: Validation and climate assessment. J. Geophys. Res., 106, 2313–2329.CrossRefGoogle Scholar
  23. Davey, M. (2005). Enhanced Ocean Data Assimilation and Climate Prediction, Framework 5 Project Technical Report. European Commission.Google Scholar
  24. De Kraker, A. (1999). A method to assess the impact of high tides, storms and storm surges as vital elements in climate history: The case of stormy weather and dikes in the northern part of Flanders. Climatic Change, 43, 287–302, doi: 10.1023/A:1005598317787.CrossRefGoogle Scholar
  25. Dickinson, R.; R. Errico; F. Giorgi; and G. Bates (1989). A regional climate model for the western United States. Climatic Change, 15, 383–422, doi: 10.1007/BF00240465.Google Scholar
  26. Essen, J.; J. Klussmann; R. Herber; and I. Grevemeyer (1999). Does microseism in Hamburg (Germany) reflect the wave climate in the North Atlantic? D. Hydrogr. Z., 51, 17–29.CrossRefGoogle Scholar
  27. Feser, F. (2006). Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon. Wea. Rev., 134, 2180–2190.CrossRefGoogle Scholar
  28. Feser, F.; R. Weisse; and H. von Storch (2001). Multi-decadal atmospheric modeling for Europe yields multi-purpose data. EOS Trans., 82, 305, 310.CrossRefGoogle Scholar
  29. Flather, R.; J. Smith; J. Richards; C. Bell; and D. Blackman (1998). Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. Global Atmos. Oc. System, 6, 165–176.Google Scholar
  30. Garcia, R.; L. Gimeno; E. Hernández; R. Prieto; and P. Ribera (2000). Reconstructions of North Atlantic atmospheric circulation in the 16th, 17th and 18th centuries from historical sources. Climate Res., 14, 147–151.CrossRefGoogle Scholar
  31. Garcia-Sotillo, M.; A. Ratsimandresy; J. Carretero; A. Bentamy; F. Valero; and F. González-Rouco (2005). A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: Contribution to the regional improvement of global reanalysis. Climate Dyn., 219–236, doi: 10.1007/s00382-005-0030-7.Google Scholar
  32. Gibson, R.; P. Kålberg; and S. Uppala (1996). The ECMWF re-analysis (ERA) project. ECMWF Newsl., 73, 7–17.Google Scholar
  33. Giorgi, F. (1990). Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941–963.CrossRefGoogle Scholar
  34. Giorgi, F.; B. Hewitson; J. Christensen; M. Hulme; H. von Storch; P. Whetton; R. Jones; L. Mearns; C. Fu; R. Arrit et al. (2001). Regional climate information: Evaluation and projections. IPCC Climate Change 2001: The Scientific Basis. Cambridge University Press.Google Scholar
  35. Glickman, T. (Ed.) (2000). Glossary of Meteorology. American Meteorological Society, Boston, Second Edition.Google Scholar
  36. Gorman, R.; K. Bryan; and A. Laing (2003). Wave hindcast for the New Zealand region: Nearshore validation and coastal wave climate. N.Z. J. Marine Freshwater Res., 37, 567–588.CrossRefGoogle Scholar
  37. Grossmann, I.; K. Woth; and H. von Storch (2006). Localization of global climate change: Storm surge scenarios for Hamburg in 2030 and 2085. Die Küste, 71, 169–182.Google Scholar
  38. Günther, H.; W. Rosenthal; M. Stawarz; J. Carretero; M. Gómez; I. Lozano; O. Serrano; and M. Reistad (1998). The wave climate of the Northeast Atlantic over the period 1955–1994: The WASA wave hindcast. Global Atmos. Oc. System, 6, 121–164.Google Scholar
  39. Hamed, K. (2009). Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J. Hydrol., 368, 143–155, doi: 10.1016/j.jhydrol.2009.01.040.CrossRefGoogle Scholar
  40. Hasselmann, K. (1979). On the signal-to-noise problem in atmospheric response studies. In: B. Shaw (Ed.), Meteorology over the Tropical Oceans. Royal Meteorological Society, Bracknell, U.K., pp. 251–259.Google Scholar
  41. Hasselmann, K. (1993). Optimal fingerprints for the detection of time dependent climate change. J. Climate, 6, 1957–1972.CrossRefGoogle Scholar
  42. Hegerl, H.; H. von Storch; K. Hasselmann; B. Santer; U. Cubasch; and P. Jones (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Climate, 9, 2281–2306.CrossRefGoogle Scholar
  43. Houghton, J.; Y. Ding; D. Griggs; M. Noguer; P. van der Linden; X. Dai; K. Maskell; and C. Johnson (Eds.) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. ISBN 0521 01495 6, 881 pp.Google Scholar
  44. IDAG (The International Ad Hoc Detection and Attribution Group) (2005). Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 1291–1314.CrossRefGoogle Scholar
  45. Ishii, M.; M. Kimoto; K. Sakamoto; and S. Iwasaki (2006). Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155–170.CrossRefGoogle Scholar
  46. Jedrasik, J.; W. Cieślikiewicz; M. Kowalewski; K. Bradtke; and A. Jankowski (2008). 44-year hindcast of the sea level and circulation in the Baltic Sea. Coastal Eng., 849–860, doi: 10.1016/j.coastaleng.2008.02.026.Google Scholar
  47. Kalnay, E.; M. Kanamitsu; R. Kistler; W. Collins; D. Deaven; L. Gandin; M. Iredell; S. Saha; G. White; J. Woollen et al. (1996). The NCEP/NCAR reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.CrossRefGoogle Scholar
  48. Kanamaru, H.; and M. Kanamitsu (2006). Scale selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334–350.CrossRefGoogle Scholar
  49. Kanamaru, H.; and M. Kanamitsu (2007). 57-year California reanalysis downscaling at 10 km (CaRDIO), Part II: Comparison with North American regional reanalysis. J. Climate, 20, 5553–5571.CrossRefGoogle Scholar
  50. Kanamitsu, M.; and H. Kanamaru (2007). 57-year California reanalysis downscaling at 10 km (CaRDIO), Part I: System detail and validation with observations. J. Climate, 20, 5527–5552.CrossRefGoogle Scholar
  51. Kanamitsu, M.; W. Ebisuzaki; J. Woollen; S. Yang; J. Hnilo; M. Fiorino; and G. Potter (2002). NCEP/DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  52. Karl, T.; R. Quayle; and P. Groisman (1993). Detecting climate variations and change: New challenges for observing and data management systems. J. Climate, 6, 1481–1494.CrossRefGoogle Scholar
  53. Kellow, A. (2007). Science and Public Policy: The Virtuous Corruption of Virtual Environmental Science. Edward Elgar. ISBN 978-1847204707.Google Scholar
  54. Kendall, M. (1970). Rank Correlation Methods. Griffin, London, Fourth Edition, 258 pp.Google Scholar
  55. Kistler, R.; E. Kalnay; W. Collins; S. Saha; G. White; J. Woollen; M. Chelliah; W. Ebisuzaki; M. Kanamitsu; V. Kousky et al. (2001). The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteorol. Soc., 82, 247–267.CrossRefGoogle Scholar
  56. Köhl, A.; and D. Stammer (2008). Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21, 1876–1860.CrossRefGoogle Scholar
  57. Kulkarni, A.; and H. von Storch (1995). Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z., 4, 82–85.Google Scholar
  58. Landsea, C. (2007). Counting Atlantic tropical cyclones back to 1900. EOS Trans., 88, 197–208, doi: 10.1029/2007EO180001.CrossRefGoogle Scholar
  59. Landsea, C.; C. Anderson; N. Charles; G. Clark; J. Dunion; J. Fernández-Patagás; P. Hungerford; C. Neumann; and M. Zimmer (2004). The Atlantic hurricane database reanalysis project: Documentation for 1851–1910 alterations and additions to the HURDAT data base. In: R. Murnane and K. Liu (Eds.), Hurricanes and Typhoons: Past, Present and Future. Columbia University Press, pp. 177–221.Google Scholar
  60. Langenberg, H.; A. Pfizenmayer; H. von Storch; and J. Sündermann (1999). Storm-related sea level variations along the North Sea coast: Natural variability and anthropogenic change. Continental Shelf Res., 19, 821–842.CrossRefGoogle Scholar
  61. Levitus, S.; J. Antonov; and T. Boyer (2005). Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi: 10.1029/2004GL021592.CrossRefGoogle Scholar
  62. Luterbacher, J.; E. Xoplaki; D. Dietrich; R. Rickli; J. Jacobeit; C. Beck; D. Gyalistras; C. Schmutz; and H. Wanner (2002). Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Climate Dyn., 18, 545–561.Google Scholar
  63. Mann, H. (1945). Nonparametric test against trends. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  64. Matulla, C; and H. von Storch (2009). Changes in eastern Canadian storminess since 1880. J. Climate, submitted.Google Scholar
  65. Matulla, C; W. Schöner; H. Alexandersson; H. von Storch; and X. Wang (2008). European storminess: Late nineteenth century to present. Climate Dyn., 31, 1125–1130, doi: 10.1007/s00382-007-0333-y.CrossRefGoogle Scholar
  66. McGregor, H.; M. Dimma; H. Fischer; and S. Mulitza (2007). Rapid 20th-century increase in coastal upwelling off northwest Africa. Science, 315, 637–639.CrossRefGoogle Scholar
  67. Meier, H.; B. Broman; and E. Kjellström (2004). Simulated sea level in past and future climates of the Baltic Sea. Climate Res., 27, 59–75.CrossRefGoogle Scholar
  68. Mesinger, F.; G. DiMego; E. Kalnay; K. Mitchell; P. Shafran; W. Ebisuzaki; D. Jovic; J. Woollen; E. Rogers; E. Berbery et al. (2006). North American regional reanalysis. Bull. Amer. Meteorol. Soc., 87, 343–360, doi: 10.1175/BAMS-87-3-343.CrossRefGoogle Scholar
  69. Mitchell, J.; D. Karoly; G. Hegerl; F. Zwiers; A. Allen; J. Marengo; V. Baros; M. Berliner; G. Boer; T. Crowley et al. (2001). Detection of climate change and attribution of causes. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., pp. 695–738. ISBN 0521 01495 6.Google Scholar
  70. Moberg, A.; and H. Alexandersson (1997). Homogenization of Swedish temperature data, Part II: Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861. Int. J. Climatol, 17, 35–54.CrossRefGoogle Scholar
  71. Musić, S.; and S. Nicković (2008). 44-year wave hindcast for the eastern Mediterranean. Coastal Eng., 872–880, doi: 10.1016/j.coastaleng.2008.02.024.Google Scholar
  72. Nakicenovic, N.; and R. Swart (Eds.), Special Report of the Intergovernmental Panel on Climate Change on Emission Scenarios. Cambridge University Press. Available at http://www.ipcc.ch/pub/reports/htm. Google Scholar
  73. Paciorek, C.; J. Risbey; V. Ventura; and R. Rosen (2002). Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15, 1573–1590.CrossRefGoogle Scholar
  74. Peterson, E.; and L. Hasse (1987). Did the Beaufort scale or the wind climate change? J. Phys. Oceanogr., 17, 1071–1074.CrossRefGoogle Scholar
  75. Ratsimandresy, A.; M. Sotillo; J. Carretero; E. Alvarez; and H. Hajji (2008). A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean basin developed within the HIPOCAS project. Coastal Eng., 827–842, doi: 10.1016/j.coastaleng.2008.02.025.Google Scholar
  76. Rybski, D.; A. Bunde; S. Havlin; and H. von Storch (2006). Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33, L06718, doi: 10.1029/2005GL025591.CrossRefGoogle Scholar
  77. Schmidt, H.; and H. von Storch (1993). German Bight storms analysed. Nature, 365, 791.CrossRefGoogle Scholar
  78. Shepherd, J.; and T. Knutson (2007). The current debate on the linkage between global warming and hurricanes. Geography Compass, 1, 1–24, doi: 10.1111/j.1749-8198. 2006.00002.x.CrossRefGoogle Scholar
  79. Smits, A.; A. K. Tank; and G. Können (2005). Trends in storminess over the Netherlands, 1962–2002. Int. J. Climatol, 25, 1331–1344, doi: 10.1002/joc.1195.CrossRefGoogle Scholar
  80. Solomon, S.; D. Qin; M. Manning; Z. Chen; M. Marquis; K. Averyt; M. Tignor; and H. Miller (Eds.) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., 996 pp. ISBN 978-0-521-88009-1.Google Scholar
  81. Sterl, A.; and S. Caires (2005). Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol., 25, 963–977, doi: 10.1002/joc.1175.CrossRefGoogle Scholar
  82. Sterl, A.; G. Komen; and P. Cotton (1998). Fifteen years of global wave hindcasts using winds from the European Centre for Medium-range Weather Forecasts reanalysis: Validating the reanalyzed winds and assessing wave climate. J. Geophys. Res., 103, 5477–5492.CrossRefGoogle Scholar
  83. Stott, P. (2003). Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett., 30, doi: 10.1029/2003GL017324.Google Scholar
  84. Sun, C; M. Rienecker; A. Rosati; M. Harrison; A. Wittenberg; C. Keppenne; J. Jacob; and R. Kovach (2007). Comparison and sensitivity of ODASI ocean analysis in the tropical Pacific. Mon. Wea. Rev., 135, 2242–2264.CrossRefGoogle Scholar
  85. Tol, R. (2006). Exchange rates and climate change: An application of FUND. Climate Change, 75, 59–80.CrossRefGoogle Scholar
  86. Tol, R. (2007). Economic scenarios for global change. In: H. von Storch, R. Tol, and G. Flöser (Eds.), Environmental Crisis: Science and Policy. Springer-Verlag, pp. 17–36. ISBN 978-3-40-75895-2.Google Scholar
  87. Trenberth, K.; P. Jones; P. Ambenje; R. Bojariu; D. Easterling; A. K. Tank; D. Parker; F. Rahimzadeh; J. Renwick; M. Rusticucci et al. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. ISBN 978-0-521-99009-1.Google Scholar
  88. Uppala, S.; P. Kallberg; A. Simmons; U. Andrae; V. da Costa Bechtold; M. Fiorino; J. Gibson; J. Haseler; A. Hernández; G. Kelly et al. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  89. von Storch, H. (2007). Climate change scenarios: Purpose and construction. In: H. von Storch, R. Tol, and G. Flöser (Eds.), Environmental Crisis: Science and Policy. Springer-Verlag, pp. 5–16. ISBN 978-3-540-75895-2.Google Scholar
  90. von Storch, H.; and H. Reichardt (1997). A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheic carbon dioxide concentration. J. Climate, 10, 2653–2662.CrossRefGoogle Scholar
  91. von Storch, H.; and R. Weisse (2008). Regional storm climate and related marine hazards in the northeast Atlantic. In: H. Diaz and R. J. Murnane (Eds.), Climate Extremes and Society. Cambridge University Press, pp. 54–73. ISBN 978-0-521-87028-3.Google Scholar
  92. von Storch, H.; and F. Zwiers (1999). Statistical Analysis in Climate Research. Cambridge University Press, New York, 494 pp.Google Scholar
  93. von Storch, H.; E. Zorita; and U. Cubasch (1991). Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime, MPI Report 64. Max-Planck-Institut für Meteorologie, Hamburg, Germany.Google Scholar
  94. von Storch, H.; H. Langenberg; and F. Feser (2000). A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673.CrossRefGoogle Scholar
  95. Wang, X.; V. Swail; F. Zwiers; X. Zhang; and Y. Feng (2009). Detection of external influence on trends of atmospheric storminess and northern ocean wave heights. Climate Dyn., 32, 189–203, doi: 10.1007/s00382-008-0442-2.CrossRefGoogle Scholar
  96. WASA-Group (1998). Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteorol. Soc., 79, 741–760.CrossRefGoogle Scholar
  97. Weisse, R.; and H. Günther (2007). Wave climate and long-term changes for the southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dynamics, 57, 161–172, doi: 10.1007/s10236-006-0094-x.CrossRefGoogle Scholar
  98. Weisse, R.; and A. Pluess (2006). Storm-related sea level variations along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dynamics, 56, 16–25, doi: 10.1007/s10236-005-0037-y, on line 2005.CrossRefGoogle Scholar
  99. Weisse, R.; H. von Storch; U. Callies; A. Chrastansky; F. Feser; I. Grabemann; H. Günther; A. Pluess; T. Stoye; J. Tellkamp et al. (2009). Regional meteorological-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bull. Amer. Meteorol. Soc., 90, 849–860, doi: 10.1175/2008BAMS2713.1.CrossRefGoogle Scholar
  100. Winterfeldt, J. (2008). Comparison of Measured and Simulated Wind Speed Data in the North Atlantic, GKSS Report 2008/2. GKSS Forschungszentrum, Geesthacht, Germany.Google Scholar
  101. Winterfeldt, J.; and R. Weisse (2009). Using QuickSCAT in the added value assessment of dynamically downscaled wind speed. Int. J. Climatol., submitted.Google Scholar
  102. Woodworth, P.; and D. Blackman (2002). Changes in extreme high waters at Liverpool since 1768. Int. J. Climatol., 22, 697–714.CrossRefGoogle Scholar
  103. Zorita, E.; and H. von Storch (1999). The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Cimate, 12, 2474–2489.CrossRefGoogle Scholar
  104. Zwiers, F.; and H. von Storch (2004). On the role of statistics in climate research. Int. J. Climatol., 24, 665–680.CrossRefGoogle Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2010

Authors and Affiliations

  • Ralf Weisse
    • 1
  • Hans von Storch
    • 1
  1. 1.GKSS Institute for Coastal ResearchGeesthachtGermany

Personalised recommendations