Marine weather phenomena

  • Ralf Weisse
  • Hans von Storch
Part of the Springer Praxis Books book series (PRAXIS)


In this chapter we introduce and describe some of the marine weather phenomena that may cause high impacts at sea or in coastal areas. Naturally, high wind speeds play a crucial role and they are associated with all the phenomena discussed. We start with a description of mid-latitude cyclones and storm tracks (Section 2.2). Mid-latitude cyclones form along the polar front in both hemispheres and preferably propagate eastward. The regions that, on average, experience high mid-latitude cyclone activity are referred to as storm tracks. Mid-latitude or extra-tropical cyclones are to be distinguished from tropical cyclones that preferably form over the tropical oceans within a latitude band ranging from about 5° to 20° in both hemispheres (Section 2.3). Both mid-latitude and tropical cyclones are associated with high wind speeds that are responsible for high-impact variations of sea surface height. The latter comprise wind-generated waves at the sea surface (Section 2.4) and storm surges (Section 2.5). Changes in mean sea level and tides are also addressed in Section 2.5. Although they are not related to high wind speeds, their effects may add to wind-induced variations of sea surface height and thus may significantly enhance the risk of flooding in coastal areas.


Wind Speed Tropical Cyclone Wave Height Storm Surge Significant Wave Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter, P. (2005). The East Coast Great Flood, 31 January-1 February 1953: A summary of the human disaster. Phil. Trans. R. Soc., 363, 1293–1312.CrossRefGoogle Scholar
  2. Blackmon, M. (1976). A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623.CrossRefGoogle Scholar
  3. Camargo, S.; A. Sobel; A. Barnston; and K. Emanuel (2007). Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428–443, doi: 10.1111/j.l600-0870.2007.00238.x.Google Scholar
  4. Cardone, V.; R. Jensen; T. Resio; V. Swail; and A. Cox (1996). Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween Storm” of October 1991 and the “Storm of the Century” of March 1993. J. Atmos. Oceanic Technol., 13, 198–230.CrossRefGoogle Scholar
  5. Christoph, M.; U. Ulbrich; and U. Haak (1995). Faster determination of the intraseasonal variability of storm tracks using Murakami’s recursive filter. Mon. Wea. Rev., 123, 578–581.CrossRefGoogle Scholar
  6. Church, J.; N. White; and J. Arblaster (2005). Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 483, 74–77, doi: 10.1038/nature04237.CrossRefGoogle Scholar
  7. Didenkulova, I.; A. Slunyaev; E. Pelinovsky; and C. Kharif (2006). Freak waves in 2005. Nat. Hazards and Earth Syst. Sci., 6, 1107–1115, doi: Scholar
  8. Ekman, M. (1996). A consistent map of postglacial uplift of Fennoscandia. Terra Nova, 9, 158–165.CrossRefGoogle Scholar
  9. Emanuel, K. (1986). An air-sea interaction theory for tropical cyclones, Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.CrossRefGoogle Scholar
  10. Emanuel, K.; and D. Nolan (2004). Tropical cyclone activity and global climate. In: Proc. 26th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society, Miami, FL.Google Scholar
  11. Gerritsen, H. (2005). What happened in 1953? The big flood in the Netherlands in retrospect. Phil. Trans. R. Soc., 363, 1271–1291.CrossRefGoogle Scholar
  12. Glickman, T. (Ed.) (2000). Glossary of Meteorology. American Meteorological Society, Boston, MA, Second Edition.Google Scholar
  13. Gönnert, G.; S. Dube; T. Murty; and W. Siefert (2001). Global storm surges. Die Küste, 63. ISBN 978-3-804-21054-6, 624 pp.Google Scholar
  14. Gray, W. (1968). A global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–670.CrossRefGoogle Scholar
  15. Greenslade, D. (2001). A wave modelling study of the 1998 Sydney to Hobart yacht race. Aust. Met. Mag., 50, 53–63.Google Scholar
  16. Hartmann, D. (1994). Global Physical Climatology. Academic Press, London, 411 pp.Google Scholar
  17. Haver, S. (2000). Evidence of the Existence of Freak Waves, Technical Report. Statoil, E&P Norway, Stavanger, Norway.Google Scholar
  18. Haver, S.; and O. Andersen (2000a). Freak Waves: Myth or Reality? Technical Report. Statoil, E&P Norway, Stavanger, Norway.Google Scholar
  19. Haver, S.; and O. Andersen (2000b). Freak waves rare realizations of a typical population or typical realizations of a rare population? In: ISOPE-2000, Seattle.Google Scholar
  20. Horsburgh, K.; and C. Wilson (2007). Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geophys. Res., 112, C08003, doi: 10.1029/2006JC004033.CrossRefGoogle Scholar
  21. Horstmann, J.; D. Thompson; F. Monaldo; F. Iris; and H. Graber (2005). Can synthetic aperature radars be used to estimate hurricane force winds? Geophys. Res. Lett., 32, L22801, doi: 10.1029/2005GL023992.CrossRefGoogle Scholar
  22. Houghton, J.; Y. Ding; D. Griggs; M. Noguer; P. van der Linden; X. Dai; K. Maskell; and C. Johnsn (Eds.) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. ISBN 0521 01495 6, 881 pp.Google Scholar
  23. Kallberg, P.; P. Berrisford; B. Hoskins; A. Simmons; S. Uppala; S. Lamy-Thépaut; and R. Hine (2005). ERA-40 Atlas, Technical Report 19. ECMWF, Reading, U.K.Google Scholar
  24. Kauker, F. (1999). Regionalization of climate model results for the North Sea. Ph.D. thesis, University of Hamburg, Hamburg, Germany. Available as GKKS Rep. 99/E/6 from GKSS-Forschungszentrum, Geesthacht, Germany.Google Scholar
  25. Kjeldsen, S. (1997). Examples of heavy weather damages caused by giant waves. Techno Marine, Bull. Soc. Naval Architects Japan, 10, 24–28.Google Scholar
  26. Koopmann, G. (1962). Die Sturmflut vom 16./17. Februar 1962 aus ozeanographischer Sicht. Die Küste, 10, 55–68 [in German].Google Scholar
  27. Kraus, H.; and U. Ebel (2003). Risiko Wetter. Springer-Verlag, Berlin [in German]. ISBN 3-540-00184-0, 250 pp.Google Scholar
  28. Landsea, C. (2008). Why doesn’t the South Atlantic Ocean experience tropical cyclones? Available at, last accessed March 25, 2008.Google Scholar
  29. Liu, K. (2004). Paleotempestology: Principles, methods, and examples from Gulf Coast lake sediments. In: R. Murnane and K. Liu (Eds.), Hurricanes and Typhoons: Past, Present and Future. Columbia University Press, pp. 13–57.Google Scholar
  30. Longuet-Higgins, M. (1952). On the statistical distribution of the wave heights of sea waves. J. Marine Res., 11, 245–266.Google Scholar
  31. Maue, R. (2009). Northern Hemisphere tropical cyclone activity. Geophys. Res. Lett., 36, L05805, doi: 10.1029/208GL035946.CrossRefGoogle Scholar
  32. McTaggart-Cowan, R.; L. Bosart; J. Gyakum; and E. Atallah (2007). Hurricane Katrina (2005), Part I: Complex life cycle of an intense tropical cyclone. Mon. Wea. Rev., 135, 3905–3926, doi: 10.1175/2007MWR1875.1.CrossRefGoogle Scholar
  33. Ministerium für ländliche Räume, Landesplanung, Landwirtschaft und Tourismus des Landes Schleswig-Holstein (2001).Generalplan Küstenschutz-Integriertes Küstenschutz-management in Schleswig-Holstein. Available at Landwirtschaft/DE/WasserMeer/09-KuestenschutzHaefen/02-GeneralplanKuestenschutz/ein-node, last accessed May 19, 2009 [in German].Google Scholar
  34. Monbaliu, J.; and A. Toffoli (2003). Regional distribution of extreme waves. In: Proceedings of MAXWAVE Final Meeting, October 8–10, Geneva, Switzerland, 10 pp. Available at Google Scholar
  35. Morey, S.; S. Baig; M. Bourassa; D. Dukhovskoy; and J. O’Brien (2006). Remote forcing contribution to storm-induced sea level rise during Hurricane Denis. Geophys. Res. Lett., 33, L19603, doi: 10.1029/2006GL027021.CrossRefGoogle Scholar
  36. Müller-Navarra, S.; I. Bork; J. Jensen; C. Koziar; C. Mudersbach; A. Müller; and E. Rudolph (2006). Modellstudien zum Sturmflut und zum Hamburg Orkan 1962. Hansa, 43, 72–88 [in German].Google Scholar
  37. Pezza, A.; and I. Simmonds (2005). The first South Atlantic hurricane: Unprecedent blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi: 10.1029/2005GL023390.CrossRefGoogle Scholar
  38. Pichler, H. (1997). Dynamik der Atmosphäre. Spektrum Akademie-Verlag, Heidelberg [in German]. ISBN 3-8274-0134-8.Google Scholar
  39. Pluess, A. (2004). Nichtlineare Wechselwirkung der Tide auf Änderungen des Meeresspiegels im Übergangsbereich Küste/Ästuar am Beispiel der Elbe. In: G. Gönnert, H. Grassl, D. Kellat, H. Kunz, B. Probst, H. von Storch, and J. Sündermann (Eds.), Proceedings of Workshop Klimaänderung und Küstenschutz, November 29–30, Hamburg, Germany. Available at [in German].Google Scholar
  40. Prandle, D.; and J. Wolf (1978). The interaction of surge and tide in the North Sea and the River Thames. Geophys. J. Roy. Astron. Soc., 55, 203–216.Google Scholar
  41. Pugh, D. (1987). Tides, Surges and Mean Sea Level. John Wiley & Sons, New York, 472 pp. ISBN 047191505x.Google Scholar
  42. Pugh, D. (2004). Changing Sea Levels: Effects of Tides, Weather and Climate. Cambridge University Press. ISBN 9780521532181.Google Scholar
  43. Rasmusson, E.; and J. Turner (2003). Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press.Google Scholar
  44. Rosenthal, W.; S. Lehner; H. Dankert; H. Güenther; K. Hessner; J. Horstmann; A. Niedermeier; J. Nieto-Borge; J. Schulz-Stellenfleth; and K. Reichert (2003). Detection of extreme single waves and wave statistics. In: Proceedings of MAXWA VE Final Meeting, October 8–10, Geneva, Switzerland, 6 pp. Available at Google Scholar
  45. Sand, S.; N. Ottesen-Hansen; P. Klinting; O. Gudmestad; and M. Sterndorff (1990). Freak wave kinematics. In: A. Tørum and O. Gudmestad (Eds.), Water Wave Kinematics. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  46. Shepherd, J.; and T. Knutson (2007). The current debate on the linkage between global warming and hurricanes. Geography Compass, 1, 1–24, doi: 10.1111/j.1749-8198.2006.00002.x.CrossRefGoogle Scholar
  47. Simpson, R.; and H. Riehl (1981). The Hurricane and Its Impact. Louisiana State University Press, 398 pp. ISBN 978-0807106884.Google Scholar
  48. Sönnichsen, U.; and J. Moseberg (2001). Wenn die Deiche brechen: Sturmfluten und Küstenschutz an der schleswig-holsteinischen Westküste und Hamburg. Husum Druck-und Verlagsgesellschaft, Husum, Germany [in German]. ISBN 3-88042-690-2.Google Scholar
  49. Soomere, T.; A. Behrens; L. Tuomi; and J. Nielsen (2008). Wave conditions in the Baltic Proper and in the Gulf of Finland during Windstorm Gudrun. Nat. Hazards Earth Syst. Sci., 8, 37–46.CrossRefGoogle Scholar
  50. Suursaar, U.; R. Kullas; M. Otsmann; I. Saaremäe; J. Kuik; and M. Merilain (2006). Cyclone Gudrun in January 2005 and its hydrodynamic consequences in Estonian coastal waters. Boreal Environ Res., 11, 143–159.Google Scholar
  51. Sverdrup, H.; and W. Munk (1947). Wind, Sea and Swell: Theory of Relations for Forecasting, Publication No. 601. U.S. Navy Hydro Office, Washington, D.C., 44 pp.Google Scholar
  52. Umweltministerium Mecklenburg-Vorpommern (1997). Küstenschutz in Mecklenburg-Vorpommern, Online Brochure. Available at htp:// [in German].Google Scholar
  53. van Dorn, W. (1994). Oceanography and Seamanship. Cornell Maritime Press, Second Edition.Google Scholar
  54. van Heerden, I.; and M. Bryan (2006). The Storm. Viking, Penguin Group. ISBN 0670037818.Google Scholar
  55. Vecchi, G.; and B. Soden (2007). Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi: 10.1029/2006GL028905.CrossRefGoogle Scholar
  56. von Storch, H.; and K. Woth (2008). Storm surges, perspectives and options. Sustainability Science, 31, doi: 10.1007/s11625-008-0044-2.Google Scholar
  57. Weisse, R.; and A Pluess (2006). Storm-related sea level variations along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dynamics, 56, 16–25, doi: 10.1007/s10236-005-0037-y, online 2005.CrossRefGoogle Scholar
  58. WMO (1998). Guide to Wave Analysis and Forecasting, WMO Vol. 702. World Meteorological Organization, Geneva, Switzerland. ISBN 92-63-12702-6.Google Scholar
  59. Wolf, J.; and R. Flather (2005). Modelling waves and surges during the 1953 storm. Phil. Trans. R. Soc., 363, 1359–1375, doi: 10.1098/rsta.2005.2572.CrossRefGoogle Scholar
  60. Woodworth, P.; and D. Blackman (2002). Changes in extreme high waters at Liverpool since 1768. Int. J. Climatol., 22, 697–714.CrossRefGoogle Scholar
  61. Yasuada, T.; N. Mori; and S. Nakayama (1998). Characteristics of giant freak waves observed in the Sea of Japan. In: Proc. Waves’ 97 Ocean Wave Measurement and Analysis, Virginia Beach, 1997, Vol. 2.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2010

Authors and Affiliations

  • Ralf Weisse
    • 1
  • Hans von Storch
    • 1
  1. 1.GKSS Institute for Coastal ResearchGeesthachtGermany

Personalised recommendations