Skip to main content

Self-Incompatibility in the Grasses

  • Chapter
Self-Incompatibility in Flowering Plants

Abstract

The grasses are amongst the most important families of plants. The family includes major food crops and pastures and they dominate many natural ecosystems. Self-incompatibility (SI) is common in the grasses and is under the control of two unlinked loci, S and Z. Specification of SI in this family is gametophytic and is determined by the combination of S and Z alleles in the pollen grain. Available data suggests that the two-locus SI system is common to all self-incompatible grass species of the Pooideae and possibly all members of the Graminae. Genetic studies showed the presence of the S-Z system in the Triticeae, the Poeae and the Avenae. Linkage analyses have identified common markers linked to the S-gene in grass species from all three tribes. Molecular markers have confirmed the syntenous localisation of S and Z in several species. Although this SI system is complex relative to that in other families, the importance of this family and the detailed genetic and physical data emerging from many genomics programsmakes this an important group for more detailed studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann U (1995) Pollen mRNAs of Phalaris coerulescens and their possible role in self-incompatibility. PhD thesis. University of Adelaide

    Google Scholar 

  • Baumann U, Juttner J, Bian XY, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot 85(Suppl A):203-209

    Article  CAS  Google Scholar 

  • Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ, Langridge P (2004) High-resolution mapping of the S and Z loci of Phalaris coerulescens. Genome 47:918-930

    Article  CAS  PubMed  Google Scholar 

  • Beddows AR (1931) Seed setting and flowering in various grasses. University College of Wales Series H 12:5-99

    Google Scholar 

  • Bush EJ, Barrett SCH (1993) Genetics of mine invasions by Deschampsia cespitosa (Poaceae). Can J Bot 71:1336-1348

    Article  Google Scholar 

  • Chu YE, Morishima H, Oka HI (1969) Partial self-incompatibility found in Oryza perennis subsp. barthii. Jpn J Genet 44:225-229

    Article  Google Scholar 

  • Conner JA, Conner P, Nasrallah ME, Nasrallah JB (1998) Comparative mapping of the Brassica S-locus region and its homeolog in Arabidopsis: Implications for the evolution of mating systems in the Brassicaceae. Plant Cell 10:801-812

    Article  CAS  PubMed  Google Scholar 

  • Connor HE (1979) Breeding systems in the grasses: A survey. N Z J Bot 17:547-574

    Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1979) Self-incompatibility in diploid Lolium perenne L. Heredity 43:95-106

    Article  Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1980) Self-incompatibility in ryegrass. III. The joint segregation of S and PGI-2 in Lolium perenne L. Heredity 44:55-62

    Article  Google Scholar 

  • Daehler CC (1999) Inbreeding depression in smooth cordgrass (Spartina alterniflora, Poaceae) invading San Francisco Bay. Am J Bot 86:131-139

    Article  Google Scholar 

  • Farrar K, Asp T, Lubberstedt T, Xu ML, Thomas AM, Christiansen C, Humphreys MO, Donni-son IS (2007) Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19:15-23

    Article  CAS  Google Scholar 

  • Fearon CH, Hayward MD, Lawrence MJ (1983) Self-incompatibility in rye grass. V. Genetic control, linkage and seed set in diploid Lolium multiflorum Lam. Heredity 50:35-46

    Article  Google Scholar 

  • Fearon CH, Hayward MD, Lawrence MJ (1984a) Self-incompatibility in rye grass. VII. The deter-mination of incompatibility genotypes in autotetraploid families of Lolium perenne L. Heredity 53:403-413

    Article  Google Scholar 

  • Fearon CH, Hayward MD, Lawrence MJ (1984b) Self-incompatibility in rye grass. VIII. The mode of action in the pollen of autotetraploids of Lolium perenne L. Heredity 53:415-422

    Article  Google Scholar 

  • Fuong FT, Vovlokov AV, Smirnov VG (1993) Genetic studies of self-fertility in rye (Secale cereale L.) 2. The search for isozyme marker genes linked to self-incompatibility loci. Theor Appl Genet 83:619-623

    Google Scholar 

  • Gertz A, Wricke G (1989) Linkage between the incompatibility locus Z and a beta-glucosidase locus in rye. Plant Breed 102:255-259

    Article  Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832-845

    Article  CAS  PubMed  Google Scholar 

  • Hayman DL (1956) The genetic control of incompatibility in Phalaris coerulescens DESF. Austr J Biol Sci 9:321-331

    Google Scholar 

  • Hayman DL (1992) The S-Z incompatibility system. In: Chapman GP, (ed) Grass evolution and domestication. Cambridge University Press, Cambridge, pp 117-137

    Google Scholar 

  • Hayman DL, Richter J (1992) Mutations affecting self-incompatibility in Phalaris coerulescens. Heredity 68:495-503

    Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-compatibility in the grasses. Science 215:1358-1364

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) in linked to phylogeny, life form, ecology and speciation rates. Mol Biol Evol 21:860-869

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95:2005-2010

    Article  CAS  PubMed  Google Scholar 

  • Körnicke F (1890) Ãœber die autogenetische und heterogenetische Befrüchtung bei den Pflanzen. Verhandlungen des naturhistorischen Vereines des preussischen Rheinlandes Band 5 47:84-99

    Google Scholar 

  • Langridge P, Baumann U, Juttner J (1999) Revisiting and revising the self-incompatibility genetics of Phalaris coerulescens. Plant Cell 11:1826

    Article  CAS  Google Scholar 

  • Leach CR (1988) Detection and estimation of linkage for a co-dominant structural gene locus linked to a gametophytic self-incompatibility locus. Theor Appl Genet 75:882-888

    Google Scholar 

  • Leach CR, Hayman DL (1987) The incompatibility loci as conserved linkage groups in the Poaceae. Heredity 58:303-305

    Article  Google Scholar 

  • Lewis D (1947) Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1:85-108

    Article  Google Scholar 

  • Lewis EJ, Humphreys MW, Caton MF (1980) Chromosomal location of two isozyme loci using primary trisomics. Theor Appl Genet 57:237-239

    Article  Google Scholar 

  • Li X, Nield J, Hayman D, Langridge P (1994) Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell 6:1923-1924

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist A (1954) Studies on self-sterility in rye, Secale cereale L. Hereditas 40:278-294

    Google Scholar 

  • Lundqvist A (1955) Genetics of incompatibility in Festuca pratensis Huds. Hereditas 47:542-562

    Article  Google Scholar 

  • Lundqvist A (1956) Self-incompatibility in rye. I. Genetic control in the diploid. Hereditas 42:293-348

    Google Scholar 

  • Lundqvist A (1957) Self-incompatibility in rye. II. Genetic control in the autotetraploid. Heriditas 43:467-511

    Google Scholar 

  • Lundqvist A (1958) Self-incompatibility in rye. IV. Factors relating to self-seeding. Hereditas 44:193-256

    Article  Google Scholar 

  • Lundqvist A (1962a) Self-incompatibility in diploid Hordeum bulbosum L. Hereditas 48:138-152

    Article  Google Scholar 

  • Lundqvist A (1962b) The nature of the two-loci incompatibility system in grasses. I. Hypothesis of a duplicative origin. Heriditas 48:153-168

    Google Scholar 

  • Lundqvist A (1965) Self-incompatibility in Dactylis aschersoniana Graebn. Hereditas 54:70-87

    Article  Google Scholar 

  • Lundqvist A (1968) The mode of origin of self-fertility in grasses. Hereditas 59:413-426

    Article  Google Scholar 

  • Lundqvist A (1969) Self-incompatibility in Dactylis glomerata L. Hereditas 61:353-360

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2002) Incompatibility system in switchgrass. Crop Sci 42:1800-1805

    Article  Google Scholar 

  • McKone MJ, Lund CP, O’Brien JM (1998) Reproductive biology of two dominant prairie grasses (Andropogon gerardii and Sorghastrum nutans, Poaceae) - male-biased sex allocation in wind pollinated plants. Am J Bot 85:776-783

    Article  Google Scholar 

  • Murray BG (1974) Breeding systems and floral biology in the genus Briza. Heredity 33:285-292

    Article  Google Scholar 

  • Nayar NM (1967) Prevalence of self-incompatibility in Oryza baythii Cheval.: Its bearing on the evolution of rice and related taxa. Genetica 38:521-527

    Article  Google Scholar 

  • Oka H-I, Morishima H (1967) Variations in the breeding systems of wild rice, Oryza perenni. Evolution 21:249-258

    Article  Google Scholar 

  • Rees H, Durrant A (1986) Recombination and genome size. Theor Appl Genet 73:72-76

    Article  Google Scholar 

  • Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508-510

    Article  Google Scholar 

  • Shinozuka H, Cogan N, Smith K, Forster J (2007) Fine-structure genetic and physical mapping of the perennial ryegrass [Lolium perenne L.] self-incompatibility loci. Molecular breeding of forage 2007, Sapporo, Japan, p 98

    Google Scholar 

  • Shivanna KR, Heslop-Harrison Y, Heslop-Harrison J (1982) The pollen-stigma interaction in the grasses. III. Features of the self-incompatibility response. Acta Bot Neerl 31:307-319

    Google Scholar 

  • Tan LW, Jackson JF (1988) Stigma proteins of the two loci self-incompatible grass Phalaris coerulescens. Sex Plant Reprod 1:25-27

    Article  Google Scholar 

  • Thomas SM, Murray BG (1975) A new site for the self-incompatibility reaction in the Gramineae. Incompat Newslett 6:22-23

    Google Scholar 

  • Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175-181

    Article  Google Scholar 

  • Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-incompatibility loci in Lolium perenne L. Heredity 94:356-363

    Article  CAS  PubMed  Google Scholar 

  • Troll HJ (1930) Die Bedeutung der Blüh- und Befruchtungsverhältnisse von Gräsern für ihre Züchtung. Der Züchter Band II:330-336

    Google Scholar 

  • Troll HJ (1931). Untersuchungen über die Selbststerilität und Selbstfertilität bei Gräsern. Zeitschrift für Züchtung. A. Pflanzenzüchtung XVI:105-136

    Google Scholar 

  • Vilhar B, Greilhuber J, Koce JD, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719-728

    Article  CAS  Google Scholar 

  • Vovlokov AV, Fuong FT, Smirnov VG (1993) Genetic studies of self-fertility in rye (Secale cereale L.) 1. The identification of genotypes of self-fertile lines for the Sf alleles of self-incompatibility genes. Theor Appl Genet 83:616-618

    Google Scholar 

  • Watson L (1990) The grass family, Poaceae. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, Cambridge, pp 1-31

    Google Scholar 

  • Watson L, Dallwitz MJ (1992) The grass genera of the world. CAB International, Wallingford

    Google Scholar 

  • Wehling P, Hackauf B, Wricke G (1994a) Phosphorylation of pollen proteins in relation to self-incompatibility in rye (Secale cereale L.) Sex Plant Reprod 7:67-75

    Article  Google Scholar 

  • Wehling P, Hackauf B, Wricke G (1994b) Identification of S-locus linked PCR fragments in rye (Secale cereale L.) by denaturing gradient gel electrophoresis. Plant J 5:891-893

    Article  CAS  Google Scholar 

  • Weimarck A (1968) Self-incompatibility in the Gramineae. Hereditas 60:157-166

    Article  Google Scholar 

  • Wilkins PW, Thorogood D (1992) Breakdown of self-incompatibility in perennial ryegrass at high temperature and its uses in breeding. Euphytica 64:65-69

    Google Scholar 

  • Wricke G (1978) Pseudo-self-compatibility in rye and its utilization in breeding. Zeitschrift für Pflanzenzüchtung 81:140-148

    Google Scholar 

  • Wricke A, Wehling P (1985) Linkage between an incompatibility locus and a peroxidase isozyme locus (Prx-7) in rye. Theor Appl Genet 71:289-291

    Google Scholar 

  • Yeh B, Henderson MT (1961) Cytogenetic relationship between cultivated rice, 0. sativa L., and five wild diploid forms of Oryza. Crop Sci 1:445-450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langridge, P., Baumann, U. (2008). Self-Incompatibility in the Grasses. In: Self-Incompatibility in Flowering Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68486-2_13

Download citation

Publish with us

Policies and ethics