Skip to main content

Linearization of vector radiative transfer by means of the forward-adjoint perturbation theory and its use in atmospheric remote sensing

  • Chapter
Light Scattering Reviews 2

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Aerosols directly affect the Earth’s climate by scattering and absorption of radiation, and indirectly by changing the microphysical properties of clouds. The total effect of aerosols on climate is very uncertain, both in magnitude and even in sign, representing one of the largest uncertainties in climate research. In order to improve our understanding of the effect of aerosols on climate, global measurements are needed of a number of aerosol properties such as size of particles, their refractive index and aerosol optical thickness. The only way to obtain these parameters at a global scale is by means of satellite remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, G. I. and Glasstone, S., 1970. Nuclear Reactor Theory. Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • Box, M., Gerstl, S., and Simmer, C., 1988. Application of the adjoint formulation to the calculation of atmospheric radiative effects. Beitr. Phys. Atmos., 61, 303–311.

    Google Scholar 

  • Carter, L. L., Horak, H. G., and Sandford, M. T., 1978. An adjoint Monte Carlo treatment of the equation of radiative transfer for polarized light. J. Comp. Phys., 26, 119–138.

    Article  Google Scholar 

  • Chandrasekhar, S., 1960. Radiative transfer. Dover Publications, Inc., New York.

    Google Scholar 

  • Chowdhary, J., 1999. Multiple scattering of polarized light in atmosphere-ocean systems: Application to sensitivity analyses of aerosol polarimetry. Ph.D. thesis, Columbia University.

    Google Scholar 

  • Chowdhary, J., Cairns, B., Mishchenko, M., Hobbs, P., Cota, G., Redemann, J., Rutledge, K., Holben, B., and Russel, E., 2005. Retrieval of aerosol scattering and absorption properties from photo-polarimetric observations over the ocean during the CLAMS experiment. J. Atmos. Sci., 62(4), 1093–1117.

    Article  Google Scholar 

  • Cox, C. and Munk, W., 1954. Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198–227.

    Google Scholar 

  • de Haan, J., Bosma, P., and Hovenier, J., 1987. The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 181, 371–391.

    Google Scholar 

  • Deirmendjian, D., 1969. Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York.

    Google Scholar 

  • de Rooij, W. A. and van der Stap, C. C. A. H., 1984. Expansion of Mie scattering matrices in generalized spherical functions. Astron. Astrophys., 131, 237–248.

    Google Scholar 

  • Domke, H., 1975. Fourier expansion of the phase matrix for Mie scattering. Z. Meteorologie, 25, 357.

    Google Scholar 

  • Frouin, R., Schwindling, M., and Deschamps, P., 1996. Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res., 101, 14 361–14 371.

    Article  Google Scholar 

  • Gel’fand, I., Minlos, R., and Shapiro, Z., 1963. Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press, Oxford.

    Google Scholar 

  • Hansen, J. E. and Travis, L. D., 1974. Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.

    Article  Google Scholar 

  • Hansen, P., 1992. Analysis of discrete ill posed problems by means of the L-curve. SIAM Rev., 34, 561–580.

    Article  Google Scholar 

  • Hansen, P. and O’Leary, D., 1993. The use of the L-curve in the regularization of discrete ill posed problems. SIAM J. Sci. Comput., 14, 1487–1503.

    Article  Google Scholar 

  • Hasekamp, O. and Landgraf, J., 2002. A linearized vector radiative transfer model for atmospheric trace gas retrieval. J. Quant. Spectrosc. Radiat. Transfer, 75, 221–238.

    Article  Google Scholar 

  • Hasekamp, O., Landgraf, J., Hartmann, W., and Aben, I., 2004. Proposal for GOME-2 PMD wavelength band selection and the effect on aerosol retrieval. Techn. Rep. SRON-EOS/RP/04-002, SRON, Utrecht, The Netherlands.

    Google Scholar 

  • Hasekamp, O. P. and Landgraf, J., 2005a. Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing. Journal of Geophysical Research (Atmospheres), 110, 4203.

    Google Scholar 

  • Hasekamp, O. P. and Landgraf, J., 2005b. Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. Journal of Geophysical Research (Atmospheres), 110, 20 207.

    Google Scholar 

  • Hovenier, J. W., 1969. Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles. J. Atmos. Sci., 26, 488–499.

    Article  Google Scholar 

  • Hovenier, J. W. and van der Mee, C. V. M., 1983. Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere. Astron. Astrophys., 128, 1–16.

    Google Scholar 

  • Koepke, P., 1984. Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 1816–1824.

    Google Scholar 

  • Koepke, P. and Hess, M., 1988. Scattering functions of tropospheric aerosols: The effect of nonspherical particles. Appl. Opt., 27, 2422–2430.

    Google Scholar 

  • Kokhanovsky, A. A., 2004. Spectral reflectance of whitecaps. Journal of Geophysical Research (Oceans), 109, 5021.

    Article  Google Scholar 

  • Kuščer, I. and Ribarič, M., 1959. Matrix formalism in the theory of diffusion of light. Opt. Acta, 6, 42–51.

    Google Scholar 

  • Landgraf, J., Hasekamp, O., and Trautmann, T., 2002. Linearization of radiative transfer with respect to surface properties. J. Quant. Spectrosc. Radiat. Transfer, 72, 327–339.

    Article  Google Scholar 

  • Landgraf, J., Hasekamp, O., Trautmann, T., and Box, M., 2001. A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory. J. Geophys. Res., 106, 27,291–27,306.

    Article  Google Scholar 

  • Landgraf, J., Hasekamp, O., van Deelen, R., and Aben, I., 2004. Rotational Raman scattering of polarized light in the Earth atmosphere: A vector radiative transfer model using the radiative transfer perturbation theory approach. J. Quant. Spectrosc. Radiat. Transfer, 87, 399–433

    Article  Google Scholar 

  • Levenberg, K., 1944. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2, 164–168.

    Google Scholar 

  • Lewins, J., 1965. Importance, the Adjoint Function. Pergamon Press, Oxford, England.

    Google Scholar 

  • Marchuk, G., 1964. Equation for the value of information from weather satellites and formulation of inverse problems. Cosmic Res., 2, 394–409.

    Google Scholar 

  • Marquardt, D., 1963. An algorithm for least squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431–441.

    Article  Google Scholar 

  • Mishchenko, M. and Travis, L., 1994. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation. Appl. Opt., 33, 7206–7225.

    Google Scholar 

  • Mishchenko, M. I., Lacis, A. A., Carlson, B., and Travis, L., 1995. Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophys. Res. Lett., 22, 1077–1980.

    Article  Google Scholar 

  • Mishchenko, M. I. and Travis, L. D., 1997. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res., 102, 16,989–17,013.

    Google Scholar 

  • Monahan, E. and O’Muircheartaigh, I., 1980. Optical power law description of oceanic whitecap coverage dependence on windspeed. J. Phys. Oceanogr., 10, 2094.

    Article  Google Scholar 

  • Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res., 93, 10 749–10 768.

    Article  Google Scholar 

  • Morel, A. and Gentili, B., 1993. Diffuse reflectance of oceanic waters. II. Bidirectional effects. Appl. Opt., 32, 6864–6879.

    Google Scholar 

  • Morel, A. and Maritorena, S., 2001. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 106, 7163–7180.

    Article  Google Scholar 

  • Morel, A. and Prieur, L., 1977. Ananlysis of variations in ocean color. Limnol. Oceanogr., 19, 591–600.

    Article  Google Scholar 

  • Morse, P. M. and Feshbach, H., 1953. Methods of Theoretical Physics. McGraw-Hill, New York.

    Google Scholar 

  • Phillips, P., 1962. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach., 9, 84–97.

    Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., 1992. Numerical Recipes in FORTRAN, the Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodgers, C., 1976. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys., 14, 609–624.

    Google Scholar 

  • Rodgers, C., 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. World Sc., River Edge, NJ.

    Google Scholar 

  • Rodgers, C. D. and Connor, B. J., 2003. Intercomparison of remote sounding instruments. Journal of Geophysical Research (Atmospheres), 108, 13.

    Google Scholar 

  • Rozanov, V., Kurosu, T., and Burrows, J., 1998. Retrieval of atmospheric constituents in the UV-visible: A new quasi-analytical approach for the calculation of weighting functions. J. Quant. Spectrosc. Radiat. Transfer, 60, 277–299.

    Article  Google Scholar 

  • Schulz, F. M., Stamnes, K., and Weng, F., 1999. VDISORT: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 61, 105–122.

    Article  Google Scholar 

  • Sendra, C. and Box, M., 2000. Retrieval of the phase function and scattering optical thickness of aerosols: A radiative transfer perturbation theory application. J. Quant. Spectrosc. Radiat. Transfer, 64, 499–515.

    Article  Google Scholar 

  • Smith, R. and Baker, K., 1981. Optical properties of the clearest natural waters. Appl. Opt., 20, 177–184.

    Google Scholar 

  • Spurr, R., Kurosu, T., and Chance, K., 2001. A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J. Quant. Spectrosc. Radiat. Transfer, 68, 689–735.

    Article  Google Scholar 

  • Stammes, P., de Haan, J., and Hovenier, J., 1989. The polarized internal radiation field of a planetary atmosphere. Astron. Astrophys., 225, 239–259.

    Google Scholar 

  • Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K., 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Optics, 27, 2502–2509.

    Google Scholar 

  • Tikhonov, A., 1963. On the solution of incorrectly stated problems and a method of regularization. Dokl. Akad. Nauk SSSR, 151, 501–504.

    Google Scholar 

  • Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J., 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res., 103, 17 099–17 110.

    Google Scholar 

  • Torres, O., Decae, R., Veefkind, P., and de Leeuw, G., 2001. OMI aerosol retrieval algorithm. ATBD-OMI-03, pages 47–69.

    Google Scholar 

  • Ustinov, E. A., 1988. Methods of spherical harmonics: Application to the transfer of polarized radiation in a vertically non-uniform planetary atmosphere. Mathematical apparatus. Cosmic Res., 26, 473.

    Google Scholar 

  • Ustinov, E. A., 1991. Inverse problem of photometric observation of solar radiation reflected by an optically dense planetary atmosphere. Mathematical methods and weighting functions of linearized inverse problem. Cosmic Res., 29, 519–532.

    Google Scholar 

  • Ustinov, E. A., 1992. Inverse problem of the photometry of solar radiation reflected by an optically thick planetary atmosphere. 3. Remote sensing of minor gaseous constituents and an atmospheric aerosol. Cosmic Res., 30, 170–181.

    Google Scholar 

  • Ustinov, E. A., 2001. Adjoint sensitivity analysis of radiative transfer equation: Temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. J. Quant. Spectrosc. Radiat. Transfer, 68, 195–211.

    Article  Google Scholar 

  • van de Hulst, H. C., 1957. Light Scattering by Small Particles. John Wiley and Sons, New York.

    Google Scholar 

  • Wiscombe, W. and Grams, G., 1988. Scattering from nonspherical Chebyshev particles, 2, Means of angular scattering patterns. Appl. Opt., 27, 2405–2421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Hasekamp, O.P., Landgraf, J. (2007). Linearization of vector radiative transfer by means of the forward-adjoint perturbation theory and its use in atmospheric remote sensing. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 2. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68435-0_5

Download citation

Publish with us

Policies and ethics