Raman lidar remote sensing of geophysical media

  • Aleksey V. Malinka
Part of the Springer Praxis Books book series (PRAXIS)


Lidars are equipment, consisting of a laser and a photo-receiver, that measures the backward scattering of light. They appeared in the 1960s (Fiocco and Smullin, 1963), i.e., immediately after the invention of the laser, and since then they have been actively used in the problems of natural media monitoring. Lidars are of great use in providing atmosphere and ocean pollution control, in control of atmospheric gases, and in measuring meteorological and climate characteristics. Generation of a beam of high power and small angular divergence makes the great advantage of lidars over projector sounding, having existed before. The possibility of accurate wavelength tuning, as well as spectral return measuring, allows the determination of the chemical composition of the atmosphere and the biochemical composition of the ocean. Thanks to the measurement of scattered light polarization degree one can learn about the shape of scatterers. Furthermore, as lasers are able to generate powerful pulses of short duration, there appears the possibility of measuring time-dependent returns, i.e., measuring not only the integral optical characteristics of a medium, but also their spatial distribution. These features made lidars a powerful tool in the investigation of geophysical media.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansmann, A., M. Reibesell, and C. Weitkamp, 1990: Measurement of atmospheric aerosol extinction profiles with Raman lidar, Opt. Lett., 15, 746–748.Google Scholar
  2. Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, 1992a: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys. B, 55, 18–28.CrossRefGoogle Scholar
  3. Ansmann, A., U. Wandinger, M. Riebesell, and C. Weitkamp, 1992b: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131.Google Scholar
  4. Bissonnette, L., and D. Hutt, 1990: Multiple scattering lidar, Appl. Opt., 29, 5045–5046.Google Scholar
  5. Bruscaglioni, P., M. Gai, and A. Ismaelli, 1999: Molecular lidar and Mie multiple scattering, MUSCLE 10 (International Workshop on Multiple Scattering Lidar Experiments): Proceedings, Florence, Italy, 19–22 April 1999, 206–211.Google Scholar
  6. Cohen, A., M. Kleiman, and J. Cooney, 1978: Lidar measurements of rotational Raman and double scattering, Appl. Opt., 17, 1905–1910.Google Scholar
  7. Cooney, J., 1972: Measurements of atmospheric temperature profiles by Raman backscatter, Appl. Meteorol., 11, 108–112.CrossRefGoogle Scholar
  8. Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions, Elsevier, New York.Google Scholar
  9. Egert, S., A. Cohen, M. Kleiman, and N. Ben-Yosef, 1983: Instantaneous integrated Raman scattering, Appl. Opt., 22, 1592–1597.Google Scholar
  10. Eloranta, E., 1972: Calculation of doubly scattered lidar returns, Ph.D. dissertation, University of Wisconsin, Madison.Google Scholar
  11. Fiocco, L., Z. Smullin, 1963: Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar, Nature, 199, 1275–1276.CrossRefGoogle Scholar
  12. Girolamo, P. D., A. Behrendt, and V. Wulfmeyer, 2006: Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations, Appl. Opt., 45, 2474–2494.CrossRefGoogle Scholar
  13. Grund C., and E. Eloranta, 1991: University of Wisconsin high spectral resolution lidar, Opt. Eng., 30, 6–12.CrossRefGoogle Scholar
  14. Katsev, I., E. Zege, A. Prikhach, and I. Polonsky, 1997: Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems, JOSA A, 14, 1338–1346.Google Scholar
  15. Klyshko, D. N., and V. V. Fadeev, 1978: Remote detecting the water impurity by means of laser spectroscopy calibrated by Raman scattering, Reports of Academy of Sciences of the USSR, 238, 320–323 (in Russian).Google Scholar
  16. Kokhanovsky, A. A., and E. P. Zege, 1997: Parametrization of local optical characteristics of cloudy media, Izv. Atmos. and Ocean. Phys., 33, 190–198.Google Scholar
  17. Lee, Z. P., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, 1994: Model for the interpretation of hyperspectral remote-sensing reflectance, Appl. Opt., 33, 5721–5732.Google Scholar
  18. Malinka, A., and E. Zege, 2001: Analytical modeling of the Raman lidar return including multiple scattering, Current Problems in Optics of Natural Waters (ONW-2001): Proceedings of International Conference, St. Petersburg, 25–29 September 2001, 176–181.Google Scholar
  19. Malinka, A., and E. Zege, 2003a: Analytical modeling of the Raman lidar return from clouds and ocean including multiple scattering, MUSCLE-12, Proc. of SPIE, 5059, 153–159.CrossRefGoogle Scholar
  20. Malinka, A., and E. Zege, 2003b: Analytical modeling of the Raman lidar return, including multiple scattering, Appl. Opt., 24, 1075–1081.Google Scholar
  21. Malinka, A., and E. Zege, 2003c: Using multiple scattering in Raman lidar sounding of warm clouds, 6th International Symposium on Tropospheric Profiling: Needs and Technologies (ISTP-2003): Proceedings, Leipzig, Saxony, Germany, 14–20 September 2003, 297–299.Google Scholar
  22. Mattis, I., A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Mueller, Y. Arshinov, S. Bobrovnikov, and I. Serikov, 2002: Relative-humidity profiling in the troposphere with a Raman lidar, Appl. Opt., 41, 6451–6462.Google Scholar
  23. McLean J. W., J. D. Freeman, and R.E. Walker, 1998: Beam Spread Function with Time Dispersion, Appl. Opt., 37, 4701–4711.Google Scholar
  24. Mobley, C., B. Gentili, H. Gordon, Z. Sin, G. Kattautar, H. Morel, P. Reinersman, K. Stamnes, and R. Stavn, 1993: Comparison of numerical models for computing underwater light fields, App. Opt., 32, 7484–7503.Google Scholar
  25. Mueller, D., U. Wandinger, and A. Ansmann, 1999a: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory, Appl. Opt., 38, 2346–2357.Google Scholar
  26. Mueller, D., U. Wandinger, and A. Ansmann, 1999b: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation, Appl. Opt., 38, 2358–2367.Google Scholar
  27. Mueller, D., U. Wandinger, and A. Ansmann, 2000: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment, Appl. Opt., 39, 1879–1892.Google Scholar
  28. Muscari, G., M. Cacciani, G. Giuliani, and G. Fiocco, 1996: An imaging lidar for multiple scattering measurements, Advances in Atmospheric Remote Sensing with Lidar: selected papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22–26 July 1996, Springer, Berlin, 103–106.Google Scholar
  29. Piironen, P., E. Eloranta, 1994: Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter, Opt. Lett., 19, 234–236.Google Scholar
  30. Polonsky, I. N., E. P. Zege, I. L. Katsev, 2001: Lidar sounding of warm clouds and determination of their microstructure parameters, Izv. Atmos. and Ocean Phys., 37, 624–632.Google Scholar
  31. Reichardt, J., M. Hess, A. Macke, 2000: Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions, Appl. Opt., 39, 1895–1910.Google Scholar
  32. Reichardt, J., U. Wandinger, M. Serwazi, and C. Weitkamp, 1996: Combined Raman lidar for aerosol, ozone, and moisture measurements, Opt. Eng., 5, 1457–1465.CrossRefGoogle Scholar
  33. Roy, G., L. Bissonnette, C. Bastille, and G. Vallee, 1997: Estimation of cloud dropletsize density distribution from multiple-field-of-view lidar returns, Opt. Eng., 36, 3404–3415.CrossRefGoogle Scholar
  34. Samokhvalov, I.V., 1979: Double scattering approximation of the lidar equation for inhomogeneous atmosphere, Opt. Lett., 4, 12–14.CrossRefGoogle Scholar
  35. Sherlock, V., A. Hauchecorne, and J. Lenoble, 1999a: Methodology for the independent calibration of Raman backscatter water-vapour lidar system, Appl. Opt., 38, 5816–5837.Google Scholar
  36. Sherlock, V., A. Garnier, A. Hauchecorne, and P. Keckhut, 1999b: Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapour, Appl. Opt., 38, 5838–5850.Google Scholar
  37. Shipley, S. et al., 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation, Appl. Opt., 22, 3716–3724.Google Scholar
  38. Tomasi, F., M. R. Perrone, and M. L. Protopapa, 2001: Monitoring O3 with Solar-Blind Raman Lidars, Appl. Opt., 40, 1314–1320.Google Scholar
  39. van de Hulst, H. C., 1957: Light Scattering by Small Particles, Chapman & Hall, London.Google Scholar
  40. Wandinger, U., 1998: Multiple-scattering influence on extinction and backscatter-coefficient measurement with Raman and high-spectral-resolution lidars, Appl. Opt., 37, 417–427.Google Scholar
  41. Wandinger, U., A. Ansmann, J. Reichardt, and T. Deshler, 1995: Determination of stratospheric-aerosol microphysical properties from independent extinction and backscattering measurements with Raman lidar, Appl. Opt., 34, 8315–8329.Google Scholar
  42. Weinman, J., and S. Shipley, 1972: Effects of multiple scattering on laser pulses transmitted through clouds, J. of Geophys. Res., 77, 7123–7128.CrossRefGoogle Scholar
  43. Whiteman, D., and S. Melfi, 1999: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar, J. Geophys. Res. D, 134, 31411–31419.CrossRefGoogle Scholar
  44. Zege, E., A. Ivanov, and I. Katsev, 1991: Image Transfer Through a Scattering Medium, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  45. Zege, E., I. Katsev, and I. Polonsky, 1995: Analytical solution to LIDAR return signals from clouds with regards to multiple scattering, Appl. Phys. B, 60, 345–354.CrossRefGoogle Scholar
  46. Zege, E. et al., 2003a: Analytical and computer modeling of the ocean lidar performance, MUSCLE-12, Proc. of SPIE, 5059, 189–199.CrossRefGoogle Scholar
  47. Zege E., I. Katsev, A. Prikhach, and G. Ludbrook, 2001: Computer simulation with regard to pulse stretching for oceanic lidar return, ONW-2001 (Current Problems in Optics of Natural Waters): Proceedings of the International Conference, St. Petersburg, Russia, 25–29 September 2001, 255–262.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2007

Authors and Affiliations

  • Aleksey V. Malinka
    • 1
  1. 1.Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations