Skip to main content

Solar radiative transfer and global climate modelling

  • Chapter
Light Scattering Reviews 2

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 834 Accesses

Abstract

Over a period of time, Earth’s outer shell (atmosphere, hydrosphere, cryosphere, biosphere) winds along a unique trajectory toward an ever-changing, and hence elusive, radiative equilibrium. It is elusive partly because Earth’s overwhelming external boundary condition, solar irradiance, is never constant thanks to continuous variations in both orbit about the Sun and solar output. As such, the best Earth, and any other planet, can do is achieve a sequence of states that are in quasi- (radiative) equilibrium over a period of time that spans at least several annual cycles. Even if boundary conditions were static, it is now recognized that Earth’s climate would not settle down to a single state or even a fixed cycle. Instead, it would execute a non-repeating sequence of, potentially very diverse, states that approximate radiative equilibrium. This chaotic character is supported by the inexorable intertwining of internal processes that operate at radically different time-scales. Indeed, the life giving/supporting character of Earth’s climate system, that begins with absorption of solar radiation and ends with infrared emission to space, owes much of its richness, and worthiness of study, to the four-dimensional interaction between radiation and the three phases of water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aires, F. and W. B. Rossow, 2003: Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: The Lorenz model case study. Quart. J. Roy. Meteor. Soc., 129, 239–275.

    Article  Google Scholar 

  • Astin, I., L. Di Girolamo, and H. M. van de Poll, 2001: Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space. J. Geophys. Res., 106, 17,303–17,310.

    Article  Google Scholar 

  • Barker, H. W. and J. A. Davies, 1992: Solar radiative fluxes for broken cloud fields above reflecting surfaces. J. Atmos. Sci., 49, 749–761.

    Article  Google Scholar 

  • Barker, H. W., 1994: A paremeterization and generalization of backscatter functions for two-stream approximations. Beitr. Phys. Atmosph., 67, 195–199.

    Google Scholar 

  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 2289–2303.

    Article  Google Scholar 

  • Barker, H. W., B. A. Wielicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.

    Article  Google Scholar 

  • Barker, H. W., J.-J Morcrette, and G.D. Alexander, 1998: Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Q. J. R. Meteorol. Soc., 124, 1245–1271.

    Article  Google Scholar 

  • Barker, H. W., G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Q. J. R. Meteorol. Soc., 125, 2127–2152.

    Article  Google Scholar 

  • Barker, H. W., R. Pincus, and J.-J. Morcrette, 2002: The Monte Carlo Independent Column Approximation: Application within large-scale models. Proceedings from the GCSS workshop, Kananaskis, Alberta, Canada, May 2002. Available at: http://www.met.utah.edu/skrueger/gcss-2002/Extended-Abstracts.pdf.

    Google Scholar 

  • Barker, H. W., and co-authors, 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.

    Article  Google Scholar 

  • Barker, H. W. and P. Räisänen, 2005: Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs. Q. J. R. Meteorol. Soc., 131, 3103–3122.

    Article  Google Scholar 

  • Barker, H. W. and A. B. Davis, 2005: Approximation methods in atmospheric 3D radiative transfer, Part 2: Unresolved variability and climate applications. In 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, Eds., Springer, Heidelberg, 686 pp.

    Google Scholar 

  • Barker, H. W., 2005: Broadband irradiances and heating rates for cloudy atmospheres. In 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, Eds., Springer, Heidelberg, 686 pp.

    Google Scholar 

  • Benner, T. C. and K. F. Evans, 2001: Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery. J. Geophys. Res., 106, 14975–14984.

    Article  Google Scholar 

  • Bergman, J. W. and P. J. Rasch, 2002: Parameterizing vertically coherent cloud distributions. J. Atmos. Sci., 59, 2165–2182.

    Article  Google Scholar 

  • Bitz, C. M., J. C. Fyfe, and G. M. Flato, 2002: Sea ice response to wind forcing from AMIP models. J. Climate, 15, 522–536.

    Article  Google Scholar 

  • Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Clim. Dyn., 22, 71–86.

    Article  Google Scholar 

  • Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Clim. and Appl. Meteor., 25, 214–226.

    Article  Google Scholar 

  • Cahalan, R. F., 1989: Overview of fractal clouds. In Advances in Remote Sensing. Deepak Publ., p. 371–389, 515 pp.

    Google Scholar 

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.

    Article  Google Scholar 

  • Cahalan, R. F., D. Silberstein, and J. Snider, 1995: Liquid water path and plane-parallel albedo bias during ASTEX. J. Atmos. Sci., 52, 3002–3012.

    Article  Google Scholar 

  • Cairns, B, A. A. Lacis, and B. E. Carlson, 2000: Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.

    Article  Google Scholar 

  • Cess, R. D., and others, 1993: Intercomparison of CO2 radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255.

    Article  Google Scholar 

  • Chambers, L. H., B. A. Wielicki, and K. F. Evans, 1997: Accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102, 1779–1794.

    Article  Google Scholar 

  • Charney, J., W. J. Quirk, S.-H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 1366–1385.

    Article  Google Scholar 

  • Clothiaux, E. E., and co-authors, 1999: The atmospheric radiation measurement program cloud radars: Operational modes. J. Atmos. and Ocean. Tech., 16, 819–827.

    Article  Google Scholar 

  • Clothiaux, E. E., H. W. Barker, and A. V. Korolev, 2005: Observing clouds and their optical properties. In 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, Eds., Springer, Heidelberg, 686 pp.

    Google Scholar 

  • Coakley, J. A., Jr., and P. Chýlek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409–418.

    Article  Google Scholar 

  • Cole, J. N. S., H. W. Barker, W. O’Hirok, E. E. Clothiaux, M. F. Khairoutdinov, and D. A. Randall, 2005a: Atmospheric radiative transfer through global arrays of 2D clouds. Geophys. Res. Lett., 32, L19817, doi: 10.1029/2005GL023329.

    Article  Google Scholar 

  • Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux, 2005b: Global consequences of interactions between clouds and radiation at scales unresolved by global climate models. Geophys. Res. Lett., 32, L06703, doi:10.1029/2004GL020945.

    Article  Google Scholar 

  • Cox, C. and W. Munk, 1956: Slopes of the sea surface deduced from photographs of the sun glitter. Bull. Scripps Inst. Oceanog., 6, 401–488.

    Google Scholar 

  • Davis, A., P. Gabriel, S. Lovejoy, D. Schertzer, and G. Austin, 1990: Discrete angle radiative transfer — Part III: Numerical results and applications. J. Geophys. Res., 95, 11,729–11,742.

    Google Scholar 

  • Evans, K. F. and A. Marshak, 2005: Numerical methods. In 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, Eds., Springer, Heidelberg, 686 pp.

    Google Scholar 

  • Fouquart, Y., B. Bonnel, and V. Ramaswamy, 1991: Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968.

    Google Scholar 

  • Fu, Q. and K.-N. Liou, 1992: On the correlated k-distribution method for radiative transfer in inhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.

    Article  Google Scholar 

  • Fu, Q., S. K. Krueger, and K.-N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 1310–1328.

    Article  Google Scholar 

  • Geleyn, J.-F. and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Cont. Atmos. Phys., 52, 1–16.

    Google Scholar 

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP), J. Atmos. Sci., 58, 978–997.

    Article  Google Scholar 

  • Gradshteyn, I. S. and Ryzhik, I. M. 1980: Table of Integrals, Series, and Products: Corrected and enlarged edition. Academic Press, London, 1160 pp.

    Google Scholar 

  • Gregory, J. M. and co-authors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    Article  Google Scholar 

  • Gu, Y. and K.-N. Liou, 2001: Radiation parameterization for three-dimensional inhomogeneous cirrus clouds: Application to climate models. J. Climate, 14, 2443–2457.

    Article  Google Scholar 

  • Hansen, J. E., D. Russell, D. Rind, P. Stone, A. Lacis, L. Travis, S. Lebedeff, and R. Ruedy, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609–662.

    Article  Google Scholar 

  • Hapke, B. W., 1981: Bidirectional reflectance spectroscopy I. Theory. J. Geophys. Res., 86, 3039–3054.

    Google Scholar 

  • Hogan, R. J. and A. J. Illingworth, 2000: Derived cloud overlap statistics from radar. Q. J. R. Meteorol. Soc., 126, 2903–2909.

    Article  Google Scholar 

  • Houghton, J. T., and co-editors, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    Google Scholar 

  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative transfer. J. Atmos. Sci., 33, 2452–2459.

    Article  Google Scholar 

  • Khairoutdinov, M. F. and D. A. Randall, 2001: A cloud-resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 3617–3620.

    Article  Google Scholar 

  • Khairoutdinov, M. F. and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, J. Atmos. Sci., 60, 607–625.

    Article  Google Scholar 

  • King, M. D. and Harshvardhan, 1986: Comparative accuracy of selected multiple scattering approximations, J. Atmos. Sci., 43, 784–801.

    Article  Google Scholar 

  • Kreyscher, M., M. Harder, P. Lemke, and G. M. Flato, 2000: Results of the Sea Ice Model Intercomparison Project: Evaluation of sea-ice rheology schemes for use in climate simulations. J. Geophys. Res., 105, 11299–11320.

    Article  Google Scholar 

  • Li, J. and V. Ramaswamy, 1996: Four-stream spherical harmonic expansion approximation for solar radiative transfer. J. Atmos. Sci., 53, 1174–1186.

    Article  Google Scholar 

  • Li, J. and H. W. Barker, 2002: Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 3321–3339.

    Article  Google Scholar 

  • Li. J., J. S. Dobbie, P. Räisänen, and Q. Min, 2005: Accounting for unresolved cloud in solar radiation. Q. J. Royal Meteorol. Soc., 131, 1607–1629.

    Article  Google Scholar 

  • Liou, K.-N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford University Press, New York, 487 pp.

    Google Scholar 

  • Loeb, N. G., K. Loukachine, B. A. Wielicki, and D. F. Young, 2003: Angular distribution models for top-of-atmosphere flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Mission Satellite. Part II: Validation. J. Appl. Meteorol., 42, 1748–1769.

    Article  Google Scholar 

  • Lovelock, J., 1988: The Ages of Gaia. W. W. Norton and Co., New York, USA, ISBN 0-393-02583-7, 252 pp.

    Google Scholar 

  • Mace, G. G. and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15, 2505–2515.

    Article  Google Scholar 

  • McFarlane, N. A., G. J. Boer, J.-P. Blanchet, M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5, 1013–1044.

    Article  Google Scholar 

  • McKee, T. B. and S. K. Cox, 1974: Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.

    Article  Google Scholar 

  • Meador, W. E. and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.

    Article  Google Scholar 

  • Monahan, E. C. and I. G. O’Muircheartaigh, 1987: Comments on ‘Albedos and glitter patterns of a wind-roughened sea surface’. J. Phys. Oceanogr., 17, 549–550.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier, 1998: A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier, 2005: The impact of model resolution on differences between independent column approximation and Monte Carlo estimates of shortwave surface irradiance and atmospheric heating rate, J. Atmos. Sci., 62, 2939–2951.

    Article  Google Scholar 

  • Oreopoulos, L. and R. Davies, 1998: Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11, 919–932.

    Article  Google Scholar 

  • Oreopoulos, L. and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Q. J. R. Meteorol. Soc., 125, 301–330.

    Google Scholar 

  • Otterman, J., 1984: Albedo of a forest modeled as a plane of dense protrusions. J. Atmos. Sci., 23, 297–307.

    Google Scholar 

  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959–970.

    Article  Google Scholar 

  • Pincus, R., S. A. MacFarlane, and S. A. Klein, 1999: Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites. J. Geophys. Res., 104, 6183–6191.

    Article  Google Scholar 

  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A new radiative transfer model for use in GCMs. J. Geophys. Res., 108(D13), 4376, doi:10.1029/2002JD003322.

    Article  Google Scholar 

  • Pinty, B., T. Lavergne, R. E. Dickenson, J.-L. Widlowski, N. Gobron, and M. M. Verstrate, 2006: Simplifying the interaction of land surfaces with radiation for related remote sensing products to climate models. J. Geophys. Res., 111, D02116, doi:10.1029/2005JD005952.

    Article  Google Scholar 

  • Preisendorfer, R. W. and C. D. Mobley, 1986: Albedos and glitter patterns of a wind-roughened sea surface. J. Phy. Oceanogr., 16, 1293–1316.

    Article  Google Scholar 

  • Räisänen, P., H. W. Barker, M. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 2047–2067.

    Article  Google Scholar 

  • Räisänen, P. and H. W. Barker, 2004: Evaluation and optimization of sampling errors for the Monte Carlo independent column approximation. Quart. J. Roy. Meteorol. Soc., 130, 2069–2086.

    Article  Google Scholar 

  • Räisänen, P., H. W. Barker and J. Cole, 2005: The Monte Carlo Independent Column Approximation’s conditional random noise: Impact on simulated climate. J. Climate, 17, 4715–4730.

    Article  Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Am. Met. Soc., 84, 1547–1564.

    Article  Google Scholar 

  • Ronnholm, K., M. B. Baker, and H. Harrison, 1980: Radiative transfer through media with uncertain or variable parameters. J. Atmos. Sci., 37, 1279–1290.

    Article  Google Scholar 

  • Ross, J., 1981: The Radiation Regime and Architecture of Plant Stands. Dr. W. Junk, Norwell, MA, 391 pp.

    Google Scholar 

  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for the Earth’s radiation budget. J. Climate, 15, 557–585.

    Article  Google Scholar 

  • Schlesinger, M. E. and J. F. B. Mitchell, 1987: Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Review of Geophys., 4, 760–798.

    Google Scholar 

  • Schneider, W. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 1413–1422.

    Article  Google Scholar 

  • Shettle, E. P. and J. A. Weinman, 1970: The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated by Eddington’s approximation. J. Atmos. Sci., 27, 1048–1055.

    Article  Google Scholar 

  • Snyder, P. K., J. A. Foley, M. H. Hitchman, and C. Delire, 2004: Analyzing the effects of complete tropical foret removal on the regional climate using a detailed three-dimensional energy budget: An application to Africa. J. Geophys. Res., 109, D211102, doi: 10.1029/2003JD004462.

    Article  Google Scholar 

  • Stamnes, K., S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.

    Article  Google Scholar 

  • Stephens, G. L., 1988: Radiative transfer through arbitrary shaped optical media: Part II: Group theory and simple closures. J. Atmos. Sci., 45, 1837–1848.

    Article  Google Scholar 

  • Stephens, G. L., P. M. Gabriel, and S.-C. Tsay, 1991: Statistical radiative transfer in one-dimensional media and its application to the terrestrial atmosphere. Trans. Theory Stat. Phys., 20, 139–175.

    Google Scholar 

  • Stephens, G. L., and co-authors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteorol. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • Stephens, G. L., N. B. Wood, and P. M. Gabriel, 2004: An assessment of the parameterization of subgrid-scale cloud effects on radiative transfer. Part I: Vertical overlap. J. Atmos. Sci., 61, 715–732.

    Article  Google Scholar 

  • Stokes, G. M. and S. E. Schwartz, 1994: The atmospheric radiation measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221.

    Article  Google Scholar 

  • Stowasser, M., K. Hamilton, and G. J. Boer, 2006: Local and global climate feedbacks in models with differing climate sensitivities. J. Climate, 19, 193–209.

    Article  Google Scholar 

  • Tiedtke, M., 1996: An extension of cloud-radiation parameterization in the ECMWF model: The representation of subgrid-scale variations of optical depth. Mon. Wea. Rev., 124, 745–750.

    Article  Google Scholar 

  • Verstraete, M. M., 1987: Radiation transfer in plant canopies: Transmission of direct solar radiation and the role of leaf orientation. J. Geophys. Res., 92, 10,985–10,995.

    Article  Google Scholar 

  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys. Space Phys., 20, 67–89.

    Google Scholar 

  • Warren, S. G., R. E. Brandt, and P. O’Rawe-Hinton, 1998: Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res., 103, 25,789–25,807.

    Google Scholar 

  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF, and LMD atmospheric climate models. Clim. Dyn., 17, 905–922.

    Article  Google Scholar 

  • Welch, R. M and B. A. Wielicki, 1985: A radiative parameterization of stratocumulus cloud fields. J. Atmos. Sci., 42, 2888–2897.

    Article  Google Scholar 

  • Wiscombe, W. J. and G. W. Grams, 1976: The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33, 2440–2451.

    Article  Google Scholar 

  • Wiscombe, W. J., 1977: The delta-Eddington approximation for a vertically inhomogeneous atmosphere. NCAR Tech. Note, TN-121+STR, 66 pp.

    Google Scholar 

  • Zdunkowski, G. W., R. M. Welch, and G. Korb, 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates. Contr. Atmos. Phys., 53, 147–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Barker, H.W. (2007). Solar radiative transfer and global climate modelling. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 2. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68435-0_1

Download citation

Publish with us

Policies and ethics