Skip to main content

Piezoelectric Materials

  • Chapter
  • First Online:
Fundamentals of Piezoelectric Sensorics

Abstract

Among the wide variety of the piezoelectric (and ferroelectric) materials known up to now, only very few of them are used in the technical applications for piezoelectric test and measurement devices. These days, synthetic piezoelectric crystals (e.g. contrary to the natural quartz), ceramics, polymer sheets and thin/thick films could be applied in transducers, actuators and sensors. Mainly the number of newly discovered ferroelectric materials grows rapidly after World War II. New technologies and materials are being developed to integrate piezoelectric (ferroelectric) materials in Micro Electro Mechanical Systems (MEMS). Electronic circuits are being integrated in one miniaturized electronic part. Ferroelectric ceramic materials are commercially available and widely used today due to their competitive prices and good material properties. Together with the homogeneous systems (crystals and polymers) also the non-homogeneous electromechanical systems are under investigation. Along with piezoelectric ceramics and thin/thick films mainly the piezoelectric composites are widely studied for various applications.

*retired

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Shiosaki T, Kobayashi H, Ohnishi O, Kawabata A (1985) Temperature compensated piezoelectric lithium tetraborate crystal for high frequency surface acoustic wave and bulk wave device applications, Proceedings of IEEE Ultrasonic Symposium, pp 228–232

    Google Scholar 

  • Adachi M, Karaki T, Miyamoto W (1999) Surface acoustic wave properties of La3Ga5SiO14 (Langasite) single crystals. Jpn J Appl Phys Part 1, 5B, 38:3283–3287

    Article  CAS  Google Scholar 

  • Alkoy S, Dogan A, Hladky AC, Laglet P, Cochran JK, Newnham RE (1997) Miniature piezoelectric hollow sphere transducers (BBs). IEEE Trans UFFC 44:1067–1076

    Article  Google Scholar 

  • Almajid A, Taya M, Hudnut S (2001) Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure. Int J Solids and Struct 38:3377–3391

    Article  Google Scholar 

  • ANSI/IEEE Standard 176-1978 (1984) Standard on piezoelectricity reproduced in IEEE Trans Sonics Ultrason SU-31 :1–55

    Google Scholar 

  • ANSI/IEEE Standard 176-1987 (1996) Standard on piezoelectricity reproduced in IEEE Trans. UFFC 43:1–54

    Google Scholar 

  • Bailey DS, Soluch W, Lee DL, Vetelino JF, Andle J, Chai BHT (1982) The elastic, dielectric and piezoelectric constants of berlinite. Proceedings of 36th Annual Frequency Control Symposium, pp 124–132

    Google Scholar 

  • Banno H (1983) Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics 50:3–12

    Article  Google Scholar 

  • Bauer F, Brown LF, Fukada E (eds.) (1995) Special issue on piezo/pyro/ferroelectric polymers. Ferroelectrics 171:1–403

    Google Scholar 

  • Berlincourt D (1981) Piezoelectric ceramics: Characteristics and applications. J Acoust Soc Am 70:1586–1595

    Article  CAS  Google Scholar 

  • Bhalla AS, Guo R, Roy R (2000) The perovskite structure – a review of its role in ceramic science and technology. Mat Res Innovat 4:3–26

    Article  CAS  Google Scholar 

  • Blistanov AA, Bondarenko VS, Perelomova NB, Strizhevskaja FN, Tshkalova VV, Shaskolskaya MP (1982) Acoustic crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  • Bohatý L, Haussühl S, Liebertz J (1989) Electrooptical coefficients and temperature and pressure derivatives of the elastic constants of tetragonal Li2B4O7. Cryst Res Technol 24:1159–1163

    Article  Google Scholar 

  • Bohm J, Heimann RB, Hengst M, Roewer R, Schindler J (1999) Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) Part I. J Cryst Growth 204:128–136

    Article  CAS  Google Scholar 

  • Bohm J, Chilla E, Flannery C, Fröhlich HJ, Hauke T, Heimann RB, Hengst M, Straube U (2000) Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) II. Piezoelectric and elastic properties. J Cryst Growth 216:293–298

    Article  CAS  Google Scholar 

  • Bowen CR, Perry A, Kara H, Mahon SW (2001) Analytical modelling of 3-3 piezoelectric composites. J European Ceram Soc 21:1463–1467

    Article  CAS  Google Scholar 

  • Brice JC (1985) Crystals for quartz resonators. Rev Mod Phys 57:105–146

    Article  CAS  Google Scholar 

  • Buchanan RC (1986) Ceramic materials for electronics – processing, properties and applications. Marcel Dekker, New York, NY

    Google Scholar 

  • Cao W, Zhang QM, Cross LE (1992) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 1-3 connectivity. J Appl Phys 72:5814–5821

    Article  CAS  Google Scholar 

  • Cao W, Zhang QM, Cross LE (1993) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2-2 connectivity. IEEE Trans UFFC 40:103–109

    Article  CAS  Google Scholar 

  • Cao W, Zhang QM, Zhao JZ, Cross LE (1995) Effects of face plates on surface displacement profile in 2-2 piezoelectric composites. IEEE Trans UFFC 42:37–41

    Article  Google Scholar 

  • Cao H, Schmidt VH, Zhang R, Cao W, Luo H (2004) Elastic, piezoelectric, and dielectric properties of 0.58PMN-0.42PT single crystal, J Appl Phys 96, 1:549–554

    Article  CAS  Google Scholar 

  • Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications. IEEE Trans UFFC 36:434–441

    Article  CAS  Google Scholar 

  • Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989) Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 100:29–38

    Article  CAS  Google Scholar 

  • Cross LE (1996) Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys 43:108–115

    Article  CAS  Google Scholar 

  • Das-Gupta DK (ed) (1994) Ferroelectric polymers and ceramic-polymer composites. Key Eng Mater 92–93 TTP, Zurich

    Google Scholar 

  • Delaunay T, Le Clézio E, Guennou M, Dammak H, Mai Pham Thi, Feuillard G (2008) Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy. IEEE Trans UFFC 55, 2:476–488

    Article  Google Scholar 

  • Detaint J, Feldmann M, Henaff J, Poignant H, Toudic Y (1979) Bulk and surface acoustic wave propagation in berlinite. Proceedings of 33rd Annual Frequency Control Symposium, pp 70–79

    Google Scholar 

  • Detaint J, Philippot E, Jumas JC, Schwartzel J, Zarka A, Capelle B, Doukhan JC (1985) Crystals growth, physical characterization and BAW devices applications of berlinite. Proceedings of 39th Annual Frequency Control Symposium, pp 234–246

    Google Scholar 

  • Devonshire AF (1949) Theory of Barium Titanate – Part I. Phil Mag 40, Serie 7, 309:1040–1063

    Google Scholar 

  • Devonshire AF (1951) Theory of Barium Titanate – Part II. Phil Mag 42, Serie 7, 333:1065–1079

    Google Scholar 

  • Dias CJ, Das-Gupta DK (1996) Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans Dielectr Electr Insul 3:706–734

    Article  CAS  Google Scholar 

  • Dogan A, Uchino K, Newnham RE (1997) Composite piezoelectric transducer with truncated conical endcaps “Cymbal”. IEEE Trans UFFC 44:597–605

    Article  Google Scholar 

  • Elissalde C, Cross LE (1995) Dynamic characteristics of Rainbow ceramics. J Am Ceram Soc 78:2233–2236

    Article  CAS  Google Scholar 

  • Elissalde C, Cross LE, Randall CA (1996) Structural-property relations in a reduced and internally biased oxide Wafer (RAINBOW) actuator material. J Am Ceram Soc 79:2041–2048

    Article  CAS  Google Scholar 

  • Emin CDJ, Werner JF (1983) The bulk acoustic wave properties of lithium tetraborate. Proceedings of 37th annual symposium on frequency control, pp 136–143

    Google Scholar 

  • Fernandez JF, Dogan A, Zhang QM, Tressler JF, Newnham RE (1996) Hollow Piezoelectric Composites. Sensors and Actuators A51:183–192

    Google Scholar 

  • Fernandez JF, Dogan A, Fielding JT, Uchino K, Newnham RE (1998) Tailoring the performance of ceramic-metal piezocomposite actuators, ‘cymbals’. Sens Actuators A65:228–237

    Article  CAS  Google Scholar 

  • Fousek J, Janovec V (1969) The orientation of domain walls in twinned ferroelectric crystals. J Appl Phys 40:135–142

    Article  CAS  Google Scholar 

  • Fox GR (1995) Lead-zirconate-titanate micro-tubes. J Mater Sci Letters 14:1496–1498

    Article  CAS  Google Scholar 

  • Fries R, Moulson AJ (1994) Fabrication and properties of an anisotropic PZT/polymer 0-3 composite. J Mater Sci Mater Electron 5:238–243

    Article  CAS  Google Scholar 

  • Fukada E (1998) History and recent progress in piezoelectric polymer research. Proceedings of IEEE Ultrasonics Symposium, pp 597–605

    Google Scholar 

  • Furukawa T, Fujino K, Fukada E (1976) Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn J Appl Phys 15:2119–2129

    Article  CAS  Google Scholar 

  • GaPO4 Materials Data Sheet (2000), AVL List GmbH, Graz, Austria

    Google Scholar 

  • Gerhard-Multhaupt R (1999) Electrets, vol 2. Laplacian Press, Morgan Hill, CA

    Google Scholar 

  • Gomez TE, Montero de Espinoza F, Levassort F, Lethiecq M, James A, Ringgård E, Millar CE, Hawkins P (1998) Ceramic powder-polymer piezocomposites for electroacoustic transduction: Modelling and design. Ultrasonics 36:907–923

    Article  CAS  Google Scholar 

  • Grouzinenko VB, Bezdelkin VV (1992) Piezoelectric resonators from La3Ga5SiO14 (Langasite) single crystals. Proceedings of IEEE frequency control symposium, pp 707–712

    Google Scholar 

  • Gualtieri JG, Kosinski JA, Wilber WD, Lu Y, Lin ST, Murray M, Ruderman W (1992) Dilithium tetraborate (Li2B4O7) Fabrication Technology. Proceedings of IEEE frequency control symposium, pp 724–731

    Google Scholar 

  • Gualtieri JG, Kosinski JA, Ballato A (1994) Piezoelectric materials for acoustic wave applications. IEEE Trans UFFC 41:53–59

    Article  Google Scholar 

  • Gururaja TR, Schultze WA, Cross LE, Newnham RE, Auld BA, Wang YJ (1985a) Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT Rod-polymer composites. IEEE Trans Sonics Ultrason SU-32:481–498

    Article  Google Scholar 

  • Gururaja TR, Schultze WA, Cross LE, Newnham RE (1985b) Piezoelectric composite materials for ultrasonic transducer applications. Part II: Evaluation of ultrasonic medical applications. IEEE Trans Sonics Ultrason SU-32:499–513

    Article  Google Scholar 

  • Güthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61:1137–1139

    Article  Google Scholar 

  • Haun MJ, Moses P, Gururaja TR, Schulze WA, Newnham RE (1983) Transversely reinforced 1-3 and 1-3-0 piezoelectric composites. Ferroelectrics 49:259–264

    Article  CAS  Google Scholar 

  • Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of PbTiO3. J Appl Phys 62:3331–3338

    Article  CAS  Google Scholar 

  • Hayward G, Bennett J (1996) Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers. IEEE Trans UFFC 43:98–108

    Article  Google Scholar 

  • He Ch, Zhou D, Wang F, Xu H, Lin D, Luo H (2006) Elastic, piezoelectric, and dielectric properties of tetragonal PMN-PT single crystal, J Appl Phys 100:086107

    Article  CAS  Google Scholar 

  • Herbert JM (1982) Ferroelectric transducers and sensors, Gordon and Breach, New York, NY

    Google Scholar 

  • Hossack JA, Hayward G (1991) Finite-element analysis of 1-3 composite transducers. IEEE Trans UFFC 38:618–629

    Article  CAS  Google Scholar 

  • Ilyaev AB, Umarov BS, Shabanova LA, Dubovik MF (1986) Temperature dependence of electromechanical properties of LGS crystals. Phys Stat Sol (a) 98:K109-K114

    Article  Google Scholar 

  • IRE Standards on Piezoelectric crystals. Proc IRE (1949) 37:1378

    Google Scholar 

  • Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics, Academic, London

    Google Scholar 

  • Jayasundere N, Smith BV (1993) Dielectric constant for binary piezoelectric 0-3 composites. J Appl Phys 73:2462–2466

    Article  Google Scholar 

  • Jayasundere N, Smith BV, Dunn JR (1994) Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity. J Appl Phys 76:2993–2998

    Article  CAS  Google Scholar 

  • Jiang W, Zhang R, Jiang B, Cao W (2003) Characterization of piezoelectric materials with large piezoelectric and electromechanical coupling coefficients. Ultrasonics 41:55–63

    Article  CAS  Google Scholar 

  • Jin J, Rajan KK, Lim LC (2006) Properties of single domain PZN-(6-7)%PT single crystal. Jpn J Appl Phys 45(11):8744–8747

    Article  CAS  Google Scholar 

  • Jona F, Shirane G (1993) Ferroelectric crystals. Dover Publications, New York, NY

    Google Scholar 

  • Jung HR, Jin BM, Cha JW, Kim JN (1997) Piezoelectric and elastic properties of Li2B4O7 single crystal. Mater Lett 30:41–45

    Article  CAS  Google Scholar 

  • Kaminskii AA, Mill BV, Khodzhabagyan GG, Konstantinova AF, Okorochkov AI, Silvestrova IM (1983a) Investigation of trigonal (La1–xNdx)3Ga5SiO14 crystals I.Growth and optical properties. Phys Stat Sol (a) 80:387–398

    Article  CAS  Google Scholar 

  • Kaminskii AA, Silvestrova IM, Sarkisov SE, Denisenko GA (1983b) Investigation of trigonal (La1–xNdx)3Ga5SiO14 crystals II. Spectral laser and electromechanical properties. Phys Stat Sol (a) 80:607–620

    Article  CAS  Google Scholar 

  • Kaminskii AA, Belokoneva EL, Mill BV, Pisarevskii YuV, Sarkisov SE, Silvestrova IM, Butashin AV, Khodzhabagyan GG (1984) Pure and Nd3+-Doped Ca3Ga2Ge4O14 and Sr3Ga2Ge4O14 single crystals, their structure, optical, spectral, luminiscence, electromechanical properties and stimulated emission. Phys Stat Sol (a) 86:345–362

    Article  CAS  Google Scholar 

  • Kar Lai Ng, Chan HLW, Choy ChL (2000) Piezoelectric and Pyroelectric Properties of PZT/P(VDF-TrFE) Composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans UFFC 47:1308–1315

    Article  Google Scholar 

  • Kim YM, Lee SH, Lee HY, Roh YR (2003) Measurement of all the material properties of PMN-PT single crystal grown by the solid-state-crystal-growth (SSCG) method, IEEE Ultrasonics Symposium 1987–1990

    Google Scholar 

  • Kosinski JA, Lu Y, Ballato A (1994) Pure-Mode Measurements of Li2B4O7 Material Properties. IEEE Trans UFFC 41:473–478

    Article  Google Scholar 

  • Krempl PW, Krispel F, Wallnöfer W, Leuprecht G (1995) GaPO4: A critical review of material data. Proceedings of 9th European frequency and time forum, pp 66–70

    Google Scholar 

  • Krempl P, Schleinzer G, Wallnöfer W (1997) Gallium phosphate, GaPO4: A new piezoelectric crystal material for high-temperature sensorics. Sens Actuators A61:361–363

    Article  CAS  Google Scholar 

  • Kushnir OS, Burak YV, Bevz OA, Polovinko II (1999) Crystal optical studies of lithium tetraborate. J Phys Cond Matter 11:8313–8327

    Article  CAS  Google Scholar 

  • Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn J Appl Phys 21:1298–1302

    Article  CAS  Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/1 (Editors: K.H. Hellwege, A.M. Hellwege), Springer Verlag. Bechmann R, Hearmon RFS (1966) Elastic, Piezoelectric, Piezooptic and Electrooptic Constants of Crystals.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/2 (Editors: K.H. Hellwege, A.M. Hellwege), Springer Verlag. Bechmann R, Hearmon RFS, Kurtz SK (1969) Elastic, Piezoelectric, Piezooptic, Electrooptic Constants and Nonlinear Dielectric Susceptibilities of Crystals.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/3 (Editors: K.H.Hellwege, A.M. Hellwege), Springer Verlag. Mitsui T, Abe R, Furuhata Y, Gesi K, Ikeda T, Kawabe K, Makita Y, Marutake M, Nakamura E, Nomura S, Sawaguchi E, Shiozaki Y, Tatsuzaki I, Toyoda K (1969) Ferro- and Antiferroelectric Substances.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/9 (Editors: K.H.Hellwege, A.M. Hellwege), Springer Verlag. Mitsui T, Marutake M, Sawaguchi E, Gesi K, Ikeda T, Kobayashi J, Makita Y, Nakamura E, Niizeki N, Nomura S, Sakudo T, Shiozaki Y, Tatsuzaki I, Toyoda K (1975) Ferro- and Antiferroelectric Substances.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/11 (Editors: K.H.Hellwege, A.M. Hellwege), Springer Verlag. Choy MM, Cook WR, Hearmon RFS, Jaffe H, Jerphagnon J, Kurtz SK, Liu ST, Nelson DF (1979) Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants and Nonlinear Dielectric Susceptibilities of Crystals.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/16a (Editors: K.H. Hellwege, A.M. Hellwege), Springer Verlag. Mitsui T, Nomura S, Adachi M, Harada J, Ikeda T, Nakamura E, Sawaguchi E, Shigenari T, Shiozaki Y, Tatsuzaki I, Toyoda K, Yamada T, Gesi K, Makita Y, Marutake M, Shiosaki T, Wakino K (1981) Ferroelectrics and Related Substances. Oxides.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/16b (Editors: K.H. Hellwege, A.M. Hellwege), Springer Verlag. Mitsui T, Nakamura E, Gesi K, Ikeda T, Makita Y, Marutake M, Nomura S, Sawaguchi E, Shigenari T, Shiozaki Y, Tatsuzaki I, Toyoda K, Adachi M, Harada J, Shiosaki T, Wakino K, Yamada T (1982) Ferroelectrics and Related Substances. Non-oxide.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/18 (Editors: K.H.Hellwege, A.M. Hellwege), Springer Verlag. Bhalla AS, Cook, Jr. WR, Hearmon RFS, Jerphagnon J, Kurtz SK, Liu ST, Nelson DF, Oudar JL (1984) Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants and Nonlinear Dielectric Susceptibilities of Crystals.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/28a (Editors: T. Mitsui, E. Nakamura, O. Madelung), Springer Verlag. Nakamura E, Adachi M, Akishige Y, Deguchi K, Harada J, Ikeda T, Okuyama M, Sawaguchi E, Shiozaki Y, Toyoda K, Yamada T, Gesi K, Hikita T, Makita Y, Shigenari T, Tatsuzaki I, Yagi T (1990) Ferroelectrics and Related Substances. Oxides.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/28b (Editors: T. Mitsui, E. Nakamura), Springer Verlag. Nakamura E, Adachi M, Akishige Y, Deguchi K, Gesi K, Hikita T, Ikeda T, Makita Y, Mitsui T, Sawaguchi E, Shigenari T, Shiozaki Y, Tatsuzaki I, Toyoda K, Yagi T, Yamada T, Yoshino K, Harada J, Okuyama M (1990) Ferroelectrics and Related Substances. Non-oxides.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/29a (Editor: D.F. Nelson), Springer Verlag. Every AG, McCurdy AK (1992) Low Frequency Properties of Dielectric Crystals. Second and Higher Order Elastic Constants.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/29b, Springer Verlag. Bhalla AS, Cook, Jr. WR, Liu ST (1993) Low Frequency Properties of Dielectric Crystals. Piezoelectric, Pyroelectric, and Related Constants.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/30a (Editor: D.F. Nelson), Springer Verlag. Cook, Jr. WR, Nelson DF, Vedan K (1996) High Frequency Properties of Dielectric Crystals. Piezooptic and Electrooptic Coefficients and Nonlinear Dielectric Susceptibilities.

    Google Scholar 

  • Landolt-Börnstein Tables, Neue Serie Vol. III/30b, Springer Verlag. Gurzadyan GG, Charra F (  2000) High Frequency Properties of Dielectric Crystals. Nonlinear Dielectric Susceptibilities.

    Google Scholar 

  • Lee S-H, Roh Y (2007) Characterization of all the elastic, piezoelectric, and dielectric constants of tetragonal PMN-PT single crystals, Jpn J Appl Phys 46, 7B:4462–4465

    Article  CAS  Google Scholar 

  • Levinson LM (1988) Electronic ceramics – Properties, Devices and Applications. Marcel Dekker, New York, NY

    Google Scholar 

  • Li Z, Grimsditch M, Xu X, Chan SK (1993) The elastic, piezoelectric and dielectric constants of tetragonal PbTiO3 single crystals. Ferroelectrics 141:313–325

    Article  CAS  Google Scholar 

  • Marra SP, Ramesh KT, Douglas AS (1999) The Mechanical properties of lead-titanate/polymer 0-3 composites. Compos Sci Technol 59:2163–2173

    Article  CAS  Google Scholar 

  • Materials Data Sheets of APC International, Tokin, Ferroperm, Morgan Matroc, Siemens

    Google Scholar 

  • Mattiat OE (1971) Ultrasonic transducer materials. Plenum Press, Tokyo

    Book  Google Scholar 

  • McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J Am Ceram Soc 73:2187–2203

    Article  CAS  Google Scholar 

  • Meyer Jr. R, Weitzing H, Xu Q, Zhang Q, Newnham RE, Cochran JK (1994) Lead Zirconate titanate hollow-sphere transducers. J Am Ceram Soc 77:1669–1672

    Article  CAS  Google Scholar 

  • Motchany AI, Chvanski PP (2001) Crystal growth of an α-quartz like piezoelectric material, berlinite. Ann Chim Sci Mat 26:199–208

    Article  CAS  Google Scholar 

  • Mulvihill ML, Park SE, Risch G, Li Z, Uchino K (1996) The role of processing variables in the flux growth of Lead zinc Niobate-Lead titanate relaxor ferroelectric single crystals. Jpn J Appl Phys 35:3984–3990

    Article  CAS  Google Scholar 

  • Nalwa HS (1995) Ferroelectric polymers. Marcel Dekker, New York, NY

    Google Scholar 

  • Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mat Res Bull 13:525–536

    Article  CAS  Google Scholar 

  • Newnham RE (1986) Composite electroceramics. Ferroelectrics 68:1–32

    Article  CAS  Google Scholar 

  • Newnham RE, Xu QC, Yoshikawa S (1994) Metal-electroactive ceramic composite actuators. U.S.Patent No.5,276,657

    Google Scholar 

  • Newnham RE, Ruschau GR (1996) Smart Electroceramics. Amer Ceram Soc Bull 75:51–61

    CAS  Google Scholar 

  • Noge S, Uno T (1998) Measurement of piezoelectric and elastic stiffness constants of β-phase quartz at high temperature region. Proceedings of IEEE ultrasonics symposium, pp 585–588

    Google Scholar 

  • Nowotny J (ed) (1992) Electronic Ceramic Materials. Key Eng Mater 66–67 TTP, Zurich

    Google Scholar 

  • Okazaki K (1985) Developments in fabrication of piezoelectric ceramics. In: Taylor GW (ed) Piezoelectricity. Gordon and Breach, New York, NY, pp 131–150

    Google Scholar 

  • Onozato N, Adachi M, Karaki T (2000) Surface acoustic wave properties of La3Ga5.5Ta0.5O14 single crystals. Jpn J Appl Phys, Part 1, 5B, 39:3028–3031

    Article  CAS  Google Scholar 

  • Palkar VR, Purandare SC, Pinto R (1999) Ferroelectric thin films of PbTiO3 on silicon. J Phys D:Appl Phys 32:R1–R18

    Article  CAS  Google Scholar 

  • Park SE, Shrout TR (1997a) Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans UFFC 44:1140–1147

    Article  Google Scholar 

  • Park SE, Shrout TR (1997b) Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  CAS  Google Scholar 

  • Park SE, Shrout TR, Bridenbaugh P, Rottenberg J, Loiacono GM (1998) Electric field induced anisotropy in electrostrictive PMN-PT crystals. Ferroelectrics 207:519–526

    Article  CAS  Google Scholar 

  • Pisarevskii YuV, Senyushenkov PA, Mill BV, Moiseeva NA (1998) Elastic, piezoelectric, dielectric properties of La3Ga5.5Ta0.5O14 single crystals. Proceedings of IEEE international frequency control symposium, pp 742–747

    Google Scholar 

  • Ramesh R (1997) Thin film ferroelectric materials and devices. Kluwer, Series in Electronic Materials: Science and Technology, Norwell, MA

    Book  Google Scholar 

  • Redin RD, Marks GW, Antoniak CE (1963) Symmetry limitations to polarization of polycrystalline ferroelectrics. J Appl Phys 34:600–610

    Article  CAS  Google Scholar 

  • Rogacheva NN (1994) The theory of shells and plates. CRC Press, Dordrecht

    Google Scholar 

  • Safari A (1994) Development of piezoelectric composites for transducers. J Phys III France 4:1129–1149

    Article  Google Scholar 

  • Sa-Gong G, Safari A, Jang SJ, Newnham RE (1986) Poling flexible piezoelectric composites. Ferroelectrics Lett 5:131–142

    Article  CAS  Google Scholar 

  • Saitoh S, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1998) A 20 MHz single element ultrasonic probe using 0.91PZN-9PT single crystal. IEEE Trans UFFC 45:1071–1076

    Article  CAS  Google Scholar 

  • Saitoh S, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1999) Forty-channel phased array ultrasonic probe using 0.91PZN-9PT single crystal. IEEE Trans UFFC 46:152–157

    Article  CAS  Google Scholar 

  • Schwartzel J, Detaint J, Capelle B, Zarka A, Philippot E, Ibanez A, Denis JP, Cochet-Muchy D (1994) Comparison of the properties of the new thermally compensated materials with trigonal symmetry. Proceedings of 8th European frequency and time forum, pp 231–244

    Google Scholar 

  • Scott JF (2000) Ferroelectric memories. Springer, Springer Series in Advanced Microelectronics, Heidelberg

    Google Scholar 

  • Sessler GM (2001) Electrets: Recent developments. J Electrostat 51–52:137–145

    Article  Google Scholar 

  • Sessler GM (1998) Electrets, vol. 1. Laplacian Press, Morgan Hill, CA

    Google Scholar 

  • Setter N, Colla EL (1993) Ferroelectric ceramics: Tutorial reviews, theory, processing, and applications. Birkhäuser Verlag, Boston

    Book  Google Scholar 

  • Shanthi M, Lim LC, Rajan KK, Jin J (2008) Complete sets of elastic, dielectric, and piezoelectric properties of flux-grown [011]-poled PMN-(28-32)%PT single crystals. Appl Phys Lett 92: 142906

    Article  CAS  Google Scholar 

  • Shi-Ji Fan (1993) Properties, production and application of new piezoelectric crystal lithium tetraborate Li2B4O7. Proceedings of IEEE frequency control symposium, pp 353–358

    Google Scholar 

  • Shimanuki S, Saito S, Yamashita Y (1998) Single crystal of the PZN-PT system grown by the vertical Bridgeman method and its characterization. Jpn J Appl Phys 37:3382–3385

    Article  CAS  Google Scholar 

  • Shukla R, Rajan KK, Gandhi P, Lim LC (2008) Complete sets of elastic, dielectric, and piezoelectric properties of [001]-poled PZN-(6–7)%PT single crystals of [110]-length cut, Appl Phys Lett 92:212907

    Article  CAS  Google Scholar 

  • Silvestrova IM, Pisarevskii YuV, Senyushenkov PA, Krupnyi AP (1986) Temperature dependence of the elastic properties of La3Ga5SiO14 single crystals. Solid State Phys 28:2875–2878 (in Russian)

    CAS  Google Scholar 

  • Silvestrova IM, Pisarevskii YuV, Kaminskii AA, Mill BV (1987) Elastic, piezoelectric and dielectric properties of La3Ga5.5Nb0.5O3 crystals. Solid State Physics 29:1520–1522 (in Russian)

    CAS  Google Scholar 

  • Silvestrova IM, Bezdelkin VV, Senyushenkov PA, Pisarevskii YuV (1993) Present stage of La3Ga5SiO14-research. Proceedings of IEEE International frequency control symposium, pp 348–350

    Google Scholar 

  • Skinner DP, Newnham RE, Cross LE (1978) Flexible composite transducers. Mat Res Bull 13:599–607

    Article  CAS  Google Scholar 

  • Smith WA, Shaulov AA, Auld BA (1989) Design of Piezocomposites for ultrasonic transducers. Ferroelectrics 91:155–162

    Article  Google Scholar 

  • Smith WA (1990) Calculating the hydrophone response of piezoceramic-rod/piezopolymer-matrix composites. Proceedings of IEEE ultrasonics symposium, pp 757–761

    Google Scholar 

  • Smith WA, Auld BA (1991) Modelling 1-3 Composite piezoelectrics: Thickness-mode oscillations. IEEE Trans UFFC 38:40–47

    Article  CAS  Google Scholar 

  • Smith WA (1993) Modelling 1-3 Composite piezoelectrics: hydrostatic response. IEEE Trans UFFC 40:41–49

    Article  CAS  Google Scholar 

  • Sorokin BP, Turchin PP, Burkov SI, Glushkov DA, Alexandrov KS (1996) Influence of static electric field, mechanical pressure and temperature on the propagation of acoustic waves in La3Ga5SiO14 piezoelectric single crystals. Proceedings of IEEE international frequency control symposium, pp 161–169

    Google Scholar 

  • Ssakharov SA, Larionov IM, Medvedev AV (1992) Application of Langasite crystals in monolithic filters operating in shear modes. Proceedings of IEEE frequency control symposium, pp 713–723

    Google Scholar 

  • Tabib-Azar M (1997) Microactuators: Electrical, magnetic, thermal, optical, mechanical, chemical and smart structures. Kluwer, Series in Electronic Materials: Science and Technology, Norwell, MA

    Google Scholar 

  • Takemura K, Ozgul M, Bornand V, Trolier-McKinstry S, Randall CA (2000) Fatigue anisotropy in single crystal PZN-PT. J Appl Phys 88:7272–7277

    Article  CAS  Google Scholar 

  • Tichý J, Gautschi G (1980) Piezoelektrische messtechnik. Springer, Heidelberg (in German)

    Book  Google Scholar 

  • Tressler JF, Alkoy S, Dogan A, Newnham RE (1999) Functional composites for sensors, actuators and transducers. Composites: Part A30:477–482

    Article  Google Scholar 

  • Turner RC, Fuierer PA, Newnham RE, Shrout TR (1994) Materials for high temperature acoustic and vibration sensors: A review. Applied Acoustics 41:299–324

    Article  Google Scholar 

  • Uda S, Komatsu R, Takayama K (1997) Congruent composition and solid solution range of Li2B4O7 crystal. J Cryst Growth 171:458–462

    Article  CAS  Google Scholar 

  • Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer series in Electronic materials: Science and technology, Norwell, MA

    Google Scholar 

  • Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York, NY

    Google Scholar 

  • Valasek J (1921) Piezo-electric and allied phenomena in Rochelle Salt. Phys Rev 17:475–481

    Article  CAS  Google Scholar 

  • Waanders JW (1991) Piezoelectric ceramics, properties and applications. Philips Components, Academic, NewYork

    Google Scholar 

  • Wada S, Park SE, Cross LE, Shrout TR (1999) Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties. Ferroelectrics 221:147–155

    Article  CAS  Google Scholar 

  • Wallnöfer W, Stadler J, Krempl P (1993) Temperature dependence of elastic constants of GaPO4 and its influence on BAW and SAW devices. Proceedings of 7th European frequency and time forum, pp 653–657

    Google Scholar 

  • Wang H, Zhang QM, Cross LE, Trottier CM (1995) Tailoring material properties by structure design – Radially poled piezoelectric cylindrical tube. Ferroelectrics 173:181–189

    Article  CAS  Google Scholar 

  • Wang F, Luo L, Zhou D, Zhao X, Luo H (2007) Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71PMN-0.29PT single crystal, Appl Phys Lett 90: 212903

    Article  CAS  Google Scholar 

  • Wiesendanger E (1973) Domain structures in orthorhombic KNbO3 and characterization of single domain crystals. Czech J Phys B23:91–99

    Article  Google Scholar 

  • Wise SA (1998) Displacement properties of RAINBOW and THUNDER piezoelectric actuators. Sens Actuators A69:33–38

    Article  CAS  Google Scholar 

  • Wu CCM, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: A new application in material design. J Am Ceram Soc 79:809–812

    Article  CAS  Google Scholar 

  • Xu QC, Yoshikawa S, Belsick JR, Newnham RE (1991) Piezoelectric composites with high sensitivity and high capacitance for use at high pressures. IEEE Trans UFFC 38:634–639

    Article  CAS  Google Scholar 

  • Yin J, Cao W (2000) Domain configurations in domain engineered PZN-4.5%PT single crystals. J Appl Phys 87:7438–7441

    Article  CAS  Google Scholar 

  • Yin J, Cao W (2002) Effective macroscopic symmetries and materials properties of multidomain 0.955PZN-0.045PT single crystals, J Appl Phys 92, 1: 444–448

    Article  CAS  Google Scholar 

  • Yin J, Jiang B, Cao W (2000) Elastic, piezoelectric and dielectric properties of PZN-4.5%PT single crystal with designed multidomains. IEEE Trans UFFC 47:285–291

    Article  CAS  Google Scholar 

  • Zgonik M, Schlesser R, Biaggio I, Voit E, Tscherry J, Günter P (1993) Materials constants of KNbO3 relevant for electro- and acousto-optics. J Appl Phys 74:1287–1297

    Article  CAS  Google Scholar 

  • Zgonik M, Bernasconi P, Duelli M, Schlesser R, Günter P, Garret MH, Rytz D, Zhu Y, Wu X (1994) Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys Rev B50:5941–5949

    Google Scholar 

  • Zhang J, Hughes WJ, Bouchilloux P, Mayer Jr. RJ, Uchino K, Newnham RE (1999) A class V flextensional transducer: The cymbal. Ultrasonics 37:387–393

    Article  Google Scholar 

  • Zhang J, Hughes WJ, Mayer Jr. RJ, Uchino K, Newnham RE (2000) Cymbal array: A broad band sound projector. Ultrasonics 37:523–529

    Article  CAS  Google Scholar 

  • Zhang QM, Wang H, Cross LE (1993) Piezoelectric Tubes and Tubular Composites for Actuator and Sensor Applications. J Mater Sci 28:3962–3968

    Article  CAS  Google Scholar 

  • Zhang QM, Chen J, Wang H, Zhao J, Cross LE (1995) A new transverse piezoelectric mode 2-2 piezocomposite for underwater transducer applications. IEEE Trans UFFC 42:774–781

    Article  Google Scholar 

  • Zhang QM, Wang H, Zhao J, Fielding JT, Newnham RE, Cross LE (1996) A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites. IEEE Trans UFFC 43:36–43

    Article  Google Scholar 

  • Zhang S, Lee S-M, Kim D-H, Lee H-Y, Shrout TR (2001) Temperature dependence of the dielectric, piezoelectric, and elastic constants for PMN-PZ-PT piezocrystals, J Appl Phys 102:114103

    Article  CAS  Google Scholar 

  • Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67PMN-0.33PT single crystals, J Appl Phys 90(7):3471–3475

    Article  CAS  Google Scholar 

  • Zhang R, Jiang B, Cao W (2002) Complete set of material constants of 0.93PZN-0.07PT domain engineered single crystal. J Mater Sci Lett 21:1877–1879

    Article  CAS  Google Scholar 

  • Zhang R, Jiang W, Jiang B, Cao W (2002a) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70PMN-0.30PT single crystal. AIP Conf Proc 626:188–197

    Article  CAS  Google Scholar 

  • Zhang R, Jiang B, Jiang W, Cao W (2002b) Anisotropy in domain engineered 0.92PZN-0.08PT single crystal and analysis of its property fluctuation, IEEE Trans UFFC 49(12):1622–1627

    Article  Google Scholar 

  • Zhang R, Jiang B, Cao W (2003) Single-domain properties of 0.67PMN-0.33PT single crystal under electric field bias, J Appl Phys 82(5): 787–789

    CAS  Google Scholar 

  • Zhang R, Jiang B, Jiang W, Cao W (2003) Complete set of properties of 0.92PZN-0.08PT single crystal with engineered domains, Mater Lett 57:1305–1308

    Article  CAS  Google Scholar 

  • Zhang R, Jiang B, Jiang W, Cao W (2006) Complete set of elastic, dielectric, and piezoelectric coefficients of 0.93PZN-0.07PT single crystal poled along [011], Appl Phys Lett 89:242908

    Article  CAS  Google Scholar 

  • Zhou D, Wang F, Luo L, Chen J, Ge W, Zhao X, Luo H (2008) Characterization of complete electromechanical constants of rhombohedral 0.72PMN-0.28PT single crystals, J Phys D:Appl Phys 41:185402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tichý*, J., Erhart, J., Kittinger*, E., Přívratská, J. (2010). Piezoelectric Materials. In: Fundamentals of Piezoelectric Sensorics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68427-5_7

Download citation

Publish with us

Policies and ethics