Skip to main content

Use of the Z Accelerator for Isentropic and Shock Compression Studies

  • Chapter
ShockWave Science and Technology Reference Library

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aidun, J.B., Gupta, Y.M.: Analysis of Lagrangian gauge measurements of simple and non-simple plane waves. J. Appl. Phys. 69, 6998 (1991)

    Article  ADS  Google Scholar 

  2. Al’tshuler, L.V., Chekin, B.S.: Metrology of high pulsed pressures, In: Proceed-ings of 1 All-Union Pulsed Pressures Symposium, VNIIFTRI, Moscow, vol. 1, pp. 5-22 (in Russian) (1974)

    Google Scholar 

  3. Al’tshuler, L.V., Kormer, S.B., Bakanova, A.A., Trunin, R.F: The isentropic compressibility of aluminum, copper, lead, and iron at high-pressures. Zh. Eksp. Teor. Fiz. 38, 790 (in Russian) (1960) [Sov. Phys. JETP 11, 573 (1960)]

    Google Scholar 

  4. Al’tshuler, L.V., Kalitkin, N.N., Kuz’mina, L.V., Chekin, B.S.: Shock adiabats for ultrahigh pressures. Zh. Eksp. Teor. Fiz. 72, 317 (in Russian) (1977) [Sov. Phys. JETP 45, 167 (1977)]

    Google Scholar 

  5. Asay, J.R.: The use of shock-structure methods for evaluating high-pressure material properties. Int. J. Impact Eng. 20, 27 (1997)

    Article  Google Scholar 

  6. Asay, J.R.: Isentropic compression experiments on the Z accelerator. In: Furnish, M.D., Chhabildas, L.C., Hixson, R.S. (eds.) Shock Compression of Condensed Matter - 1999, p. 261. American Institute of Physics, New York (2000)

    Google Scholar 

  7. Asay, J.R., Chhabildas, L.C.: Determination of the shear strength of shock com-pressed 6061-T6 aluminum. In: Meyers, M.A., Murr, L.E. (eds.) Shock Waves and High-Strain-Rate Phenomena in Metals, p. 417. Plenum, New York (1981)

    Google Scholar 

  8. Asay, J.R., Kerley, G.I.: The response of materials to dynamic loading. Int. J. Impact Eng. 5, 69 (1987)

    Article  Google Scholar 

  9. Asay, J.R., Chhabildas, L.C.: Paradigms and Challenges in Shock Wave Re-search. In: Horie, Y., Davison, L., Thadhani, N.N. (eds.) High-Pressure Shock Compression of Solids VI, p. 57. Springer, Berlin Heidelberg, New York (2003)

    Google Scholar 

  10. Asay, J.R., Hall, C.A., Holland, K.G., Bernard, M.A., Stygar, W.A., Spielman, R.B., Rosenthal, S.E., McDaniel, D.H., Hayes, D.B.: Isentropic compression of iron with the Z accelerator. In: Furnish, M.D., Chhabildas, L.C., Hixson, R.S. (eds.) Shock Compression of Condensed Matter - 1999, p. 1151. American Institute of Physics, New York (2000)

    Google Scholar 

  11. Barker, L.M.: High-pressure quasi-isentropic impact experiments. In: Asay, J.R., Graham, R.A., Straub, G.K. (eds.) Shock Compression of Condensed Matter -1983, p. 111. North-Holland, Amsterdam (1984)

    Google Scholar 

  12. Barker, L.M., Hollenbach, R.E.: Shock-wave studies of PMMA, fused silica and sapphire. J. Appl. Phys. 41, 4208 (1970)

    Article  ADS  Google Scholar 

  13. Barker, L.M., Hollenbach, R.E.: Laser interferometer for measuring the high velocities of any reflecting surface. J. Appl. Phys. 43, 4669 (1972)

    Article  ADS  Google Scholar 

  14. Barker, L.M., Hollenbach R.E.: Shock wave studies of the α-ε phase transition in iron. J. Appl. Phys. 45, 4872 (1974)

    Article  ADS  Google Scholar 

  15. Barnes, J.F., Blewett, P.J., McQueen, R.G., Meyer, K.A., Venable, D.: Taylor instability in solids. J. Appl. Phys. 45, 727 (1974)

    Article  ADS  Google Scholar 

  16. Belov, S.I., Boriskov, G.V., Bykov, A.I., Il’kaev, R.I., Luk’yanov, N.B., Matveev, A.Ya., Mikhailova, O.L., Selemir, V.D., Simakov, G.V., Trunin, R.F., Trusov, I.P., Urlin, V.D., Fortov, V.E., Shuikin, A.N.: Shock compression of solid deuterium. Sov. Phys. JETP Lett. 76, 433 (2002)

    Article  ADS  Google Scholar 

  17. Benedick, W.B., Asay, J.R.: High-pressure ramp wave generators. Bull. Am. Phys. Soc. 21, 1298 (1976)

    Google Scholar 

  18. Boriskov, G.V., Bykov, A.I., Il’kaev, R.I., Selemir, V.D., Simakov, G.V., Trunin, R.F., Urlin, V.D., Fortov, V.E., Shuikin, A.N.: Shock-wave compression of solid deuterium at a pressure of 120 GPa. Dokl. Phys. 48, 553 (2003)

    Article  ADS  Google Scholar 

  19. Boslough, M.B., Asay, J.R.: Basic principles of shock compression. In: Asay, J.R., Shahinpoor, M. (eds.) High-Pressure Shock Compression of Solids, p. 7. Springer, Berlin Heidelberg, New York (1983)

    Google Scholar 

  20. Collins, G.W., DaSilva, L.B., Celliers, P., Gold, D.M., Foord, M.E., Wallace, R.J., Ng, A., Weber, S.V., Budil, K.S., Cauble, R.: Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281, 1178 (1998)

    Article  ADS  Google Scholar 

  21. Da Silva, L.B., Celliers, P., Collins, G.W., Budil, K.S., Holmes, N.C., Barbee, T.W., Jr., Hammel, B.A., Kilkenny, J.D., Wallace, R.J., Ross, M., Cauble, R., Ng, A., Chiu, G.: Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78, 483 (1997)

    Article  ADS  Google Scholar 

  22. Davis, J.-P.: Quasi-isentropic compression of iron. Private Communication (2004)

    Google Scholar 

  23. Davis, J.-P., Hayes, D.B.: Isentropic compression experiments on dynamic solidification in tin. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock Compression of Condensed Matter - 2003, p. 163. American Institute of Physics, New York (2003)

    Google Scholar 

  24. Davis, J.-P., et al.: Quasi-isentropic response of aluminum. Private Communication (2004)

    Google Scholar 

  25. Davison, L., Graham, R.A.: Shock compression of solids. Phys. Rep. 55, 257 (1979)

    Article  ADS  Google Scholar 

  26. Desjarlais, M.P.: Practical improvements to the Lee-More conductivity near the metal-insulator transition. Contrib. Plasma Phys. 41, 267 (2001)

    Article  ADS  Google Scholar 

  27. Desjarlais, M.P.: Density functional calculations of the liquid deuterium Hugoniot, reshock and reverberation timing. Phys. Rev. B 68, 064204 (2003)

    Article  ADS  Google Scholar 

  28. Desjarlais, M.P., Kress, J.D., Collins, L.A.: Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E 66, 025401 (2002)

    Article  ADS  Google Scholar 

  29. Ding, J.L., Asay, J.R., Knudson, M.D.: Thermal and mechanical analysis of material response under ramp and shock loading. Bull. Am. Phys. Soc. 48, 83 (2003)

    Google Scholar 

  30. Duvall, G.E., Graham, R.A.: Phase transitions under shock wave loading. Rev. Mod. Phys. 49, 523 (1977)

    Article  ADS  Google Scholar 

  31. Edwards, J., Lorenz, K.T., Remington, B.A., Pollaine, S., Colvin, J., Braun, D., Lasinski, B.F., Reisman, D., McNaney, J.M., Greenbough, J.A., Wallace, R., Louis, H., Kalantar, D.: Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. Phys. Rev. Lett. 92, 075002 (2004)

    Article  ADS  Google Scholar 

  32. Fowles, G.R.: Shock wave compression of hardened and annealed 2024 aluminum. J. Appl. Phys. 32, 1475 (1961)

    Article  ADS  Google Scholar 

  33. Glushak, B.L., Zharkov, A.P., Zhernokletov, M.V., Ternovoi, V.Ya., Filimonov, A.S., Fortov, V.E..: Experimental investigation of the thermodynamics of dense plasmas formed from metals at high energy concentrations. Zh. Eksp. Teor. Fiz. 96,1301 (in Russian) [trans. in Sov. Phys. JETP 69, 739] (1989)

    Google Scholar 

  34. Greeff, C.W., Rigg, P.A., Knudson, M.D., Hixson, R.S., Gray, G.T. III: Modeling dynamic phase transitions in Ti and Zr. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock Compression of Condensed Matter - 2003, p. 209. American Institute of Physics, New York (2003)

    Google Scholar 

  35. Hall, C.A.: Isentropic compression experiments on the Sandia Z accelerator. Phys. Plasmas 7, 2069 (2003)

    Article  ADS  Google Scholar 

  36. Hall, C.A., Asay, J.R., Knudson, M.D., Stygar, W.A., Spielman, R., Pointon, T.D., Reisman, D.B., Toor, A., Cauble, R.C.: Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Rev. Sci. Instrum. 72, 3587 (2001)

    Article  ADS  Google Scholar 

  37. Hall, C.A., Knudson, M.D., Asay, J.R., Lemke, R., Oliver, B.: High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 26, 275 (2002)

    Article  Google Scholar 

  38. Hall, C.A., Asay, J.R., Knudson, M.D., Hayes, D.B., Lemke, R.W., Davis, J.-P., Deeney, C.: Recent advances in quasi-isentropic compression experiments on the Sandia Z accelerator. In: Furnish, M.D., Thadhani, N., Horie Y. (eds.) Shock Compression of Condensed Matter - 2001, p. 1163. American Institute of Physics, New York 1163 (2002)

    Google Scholar 

  39. Hare, D.E., Reisman, D.B., Garcia, F., Green, L.G., Forbes, J.W., Furnish, M.D., Hall, C., Hickman, R.J.: The isentrope of unreacted LX-04 to 170 kbar. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock Compression of Condensed Matter - 2003, p. 145. American Institute of Physics, New York (2003)

    Google Scholar 

  40. Hawke, R., Duerre, D.E., Huebel, J.G., Klapper, J.G., Steinberg, D.J., Keeler, R.N.: Method of isentropically compressing materials to several megabars. J. Appl. Phys. 43, 2734 (1972)

    Article  ADS  Google Scholar 

  41. Hayes, D.B., Hall, C.A.: Correcting free surface effects by integrating the equa-tions of motion backward in space. In: Furnish, M.D., Thadhani, N., Horie, Y. (eds.) Shock Compression of Condensed Matter - 2001, p. 1177. American Institute of Physics, New York (2002)

    Google Scholar 

  42. Holmes, N.C.: Shock compression of low-density foams. In: Schmidt, S.C., Shaner, J.W., Samara, G.A., Ross, M. (eds.) High-Pressure Science and Technology - 1993, p. 153. American Institute of Physics, New York (1994)

    Google Scholar 

  43. Kerley, G.I.: Theoretical equation of state for aluminum. Int. J. Impact Eng. 5, 441(1987)

    Article  Google Scholar 

  44. Kerley, G.I.: Equations of State for Aluminum and Beryllium. Kerley Publishing Services, Report No. KPS98-1 (1998)

    Google Scholar 

  45. Kerley, G.I.: Equation of State for Composite Materials. Kerley Publishing Services, Report No. KPS99-4 (1999)

    Google Scholar 

  46. Kerley, G.I.: Equations of State for Hydrogen and Deuterium. Sandia National Laboratories, Report SAND2003-3613 (2003)

    Google Scholar 

  47. Knudson, M.D.: Hyper-velocity flyer plate launch. Private Communication (2004)

    Google Scholar 

  48. Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R., Anderson, W.W.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87, 225501-1 (2001)

    Article  ADS  Google Scholar 

  49. Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R.: Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys. Rev. Lett. 90, 035505 (2003)

    Article  ADS  Google Scholar 

  50. Knudson, M.D., Lemke, R.W., Hayes, D.B., Hall, C.A., Deeney, C., Asay, J.R.: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a mag-netically accelerated flyer plate technique. J. Appl. Phys. 94, 4420 (2003)

    Article  ADS  Google Scholar 

  51. Knudson, M.D., Hall, C.A., Lemke, R., Deeney, C., Asay, J.R.: High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 29,377 (2003)

    Article  Google Scholar 

  52. Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R., Deeney, C.: Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Phys. Rev. B. 69,144209 (2004)

    Article  ADS  Google Scholar 

  53. Knudson, M.D., Asay, J.R., Deeney, C.: Adiabatic release measurements in aluminum from 240 to 500 GPa states on the principal Hugoniot. J. Appl. Phys. 97,073514(2005)

    Article  ADS  Google Scholar 

  54. Kormer, S.B., Funtikov, A.I., Urlin, V.D., Kolesnikova, A.N.: Dynamical com-pression of porous metals and the equation of state with variable specific heat at high temperatures. Zh. Eksp. Teor. Fiz. 42, 626 (in Russian) (1962) [Sov. Phys. JETP 15, 477 (1962)]

    Google Scholar 

  55. Lebedev, A.I., Nizovtsev, P.N., Rayevsky, V.A., Solov’ev, V.P.: Rayleigh-Taylor’s instability in solids. Sov. Phys. Dokl. 41, 328 (1996)

    Google Scholar 

  56. Lemke, R.W., Knudson, M.D., Hall, C.A., Haill, T.A., Desjarlais, M.P., Asay, J.R., Mehlhorn, T.A.: Characterization of magnetically accelerated flyer plates. Phys. Plasmas 10, 1092 (2003)

    Article  ADS  Google Scholar 

  57. Lemke, R.W., Knudson, M.D., Robinson, A.C., Haill, T.A., Struve, K.W., Asay, J.R., Mehlhorn, T.A.: Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates. Phys. Plasmas 10, 1867 (2003)

    Article  ADS  Google Scholar 

  58. Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  59. Matzen, M.K.: Z pinches as intense X-ray sources for high-energy density physics applications. Phys. Plasmas 4, 1519 (1997)

    Article  ADS  Google Scholar 

  60. Mitchell, A.C., Nellis, W.J.: Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 52, 3363 (1981)

    Article  ADS  Google Scholar 

  61. Nellis, W.J., Mitchell, A.C., van Thiel, M., Devine, G.J., Trainor, R.J.: Equation-of-state data for molecular hydrogen and deuterium at shock pres-sures in the range 2-76 GPa (20-760 kbar). J. Chem. Phys. 79, 1480 (1983)

    Article  ADS  Google Scholar 

  62. Nesterenko, V.: Dynamics of Heterogeneous Materials. Springer, Berlin Heidelberg, New York (2001)

    Google Scholar 

  63. Nguyen, J.H., Orlikowski, D., Streitz, F.H., Holmes, N.C., Moriarty, J.A.: Specifically prescribed dynamic thermodynamic paths and resolidification experi-ments. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock Compression of Condensed Matter - 2003, p. 1225. American Institute of Physics, New York (2003)

    Google Scholar 

  64. Perez, M.: The MIVAR: a ramp-wave generator fabricated by the plasma spray technique. In: Schmidt, S.C., Johnson, J.N., Davison, L.W. (eds.) Shock Com-pression of Condensed Matter - 1989, p. 751. North-Holland, Amsterdam (1990)

    Google Scholar 

  65. Reisman, D.B.: Ramp loading of uranium alloys. Private communication (2003)

    Google Scholar 

  66. Reisman, D.B., Toor, A., Cauble, R.C., Hall, C.A., Asay, J.R., Knudson, M.D., Furnish, M.D.: Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys. 89, 1625 (2001)

    Article  ADS  Google Scholar 

  67. Reisman, D.B., Wolfer, W.G., Elsholz, A., Furnish, M.D.: Isentropic compression of irradiated stainless steel on the Z accelerator. J. Appl. Phys. 93, 8952 (2003)

    Article  ADS  Google Scholar 

  68. Remington, B.A., Cavallo, R.M., Edwards, M.J., Lasinski, B.F., Lorenz, K.T., Lorenzana, H.E., McNaney, J., Pollaine, S.M., Rowley, D.P.: Materials Science at the Extremes of Pressure and Strain Rate. Lawrence Livermore National Laboratory, Report UCRL-JC-152288 (2003)

    Google Scholar 

  69. Remington, B.A., Bazan, G., Belak, J., Bringa, E., Caturia, M., Colvin, J.D., Edwards, M.J., Glendinning, S.G., Ivanov, D., Kad, B., Kalantar, D., Kumar, M., Lasinski, B.F., Lorenz, K.T., McNaney, J.M., Meyerhofer, D.D., Meyers, M.A., Pollaine, S.M., Rowley, D., Schneider, M., Stolken, J.S., Wark, J.S., Weber, S.V., Wolfer, W.G., Yaakobi, B.: Materials science under extreme conditions of pressure and strain rate. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 35, 2587 (2004)

    Article  ADS  Google Scholar 

  70. Ross, M.: Linear-mixing model for shock-compressed liquid deuterium. Phys. Rev. B 58, 669 (1998)

    Article  ADS  Google Scholar 

  71. Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170 (2004)

    Article  ADS  Google Scholar 

  72. Seidel, D.B., Kiefer, M.L., Coats, R.S., Pointon, T.D., Quintenz, J.P., Johnson, W.A.: The 3D, electromagnetic, particle in cell code, QUICKSILVER. In: Tenner, A. (ed.) CP90 Europhysics Conference on Computational Physics, pp. 475-482. World Scientific, Amsterdam (1991)

    Google Scholar 

  73. Sharp, G.: Magnetic Diffusion in Conductors at Ultra-high Current Density. PhD Thesis, University of New Mexico (2002)

    Google Scholar 

  74. Simonenko, V.A., Voloshin, N.P., Vladimirov, A.S., Nagibin, A.P., Nogin, V.N., Popov, V.A., Sal’nikov, V.A., Shoidin, Y.A.: Absolute measurements of shock compressibility of aluminum at pressures ≥ 1 TPa. Zh. Eksp. Teor. Fiz. 88, 1452 (in Russian) (1985) [Sov. Phys. JETP 61, 869 (1985)]

    Google Scholar 

  75. Summers, R.M., Peery, J.S., Wong, M.W., Hertel, E.S., Jr., Trucano, T.G., Chhabildas, L.C.: Recent progress in Alegra development and applications to ballistic impacts. Int. J. Impact Eng. 20, 779 (1997)

    Article  Google Scholar 

  76. Trott, W.M., Castaneda, J.N., O’Hare, J.J., Baer, M.R., Chhabildas, L.C., Knudson, M.D., Davis, J.-P., Asay, J.R.: Dispersive velocity measurements in heterogeneous materials. Bull. Am. Phys. Soc. 46, 31 (2001)

    Google Scholar 

  77. Trunin, R.F., Nellis, W.J.: Shock Compression of Liquid Deuterium at 54 GPa. Lawrence Livermore National Laboratory, Report UCRL-JC-152886 (2003)

    Google Scholar 

  78. Vildanov, V.G., Gorshkov, M.M., Slobodenjukov, V.M., Rushkovan, E.N.: In: Schmidt, S.C., Tao, W.C. (eds.) Shock Compression of low initial density quartz at pressures up to 100 GPa, p. 121. American Institute of Physics, New York (1996)

    Google Scholar 

  79. Vogler, T.J.: Determining compressive strength for ramp loading. Private Communication (2004)

    Google Scholar 

  80. Volkov, L.P., Voloshin, N.P., Vladimirov, A.S., Nogin, V.N., Simonenko, V.A.: Shock compressibility of aluminum at pressure 10 Mbar. Pis’ma Zh. Eksp. Teor. Fiz. 31, 623 (in Russian) (1981) [Sov. Phys. JETP Lett. 31, 588 (1981)]

    Google Scholar 

  81. Zhernokletov, M.V., Lebedeva, T.S., Medvedev, A.B., Mochalov, M.A., Shuykin, A.N., Fortov, V.E.: In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Thermodynamic parameters and equation of state of low-density SiO2 aerogel, p. 763. American Institute of Physics, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Knudson, M.D. (2007). Use of the Z Accelerator for Isentropic and Shock Compression Studies. In: Horie, Y. (eds) ShockWave Science and Technology Reference Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68408-4_1

Download citation

Publish with us

Policies and ethics