Skip to main content

Workspace-Based Connectivity Oracle: An Adaptive Sampling Strategy for PRM Planning

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

This paper presents Workspace-based Connectivity Oracle (WCO), a dynamic sampling strategy for probabilistic roadmap planning. WCO uses both domain knowledge—specifically, workspace geometry—and sampling history to construct dynamic sampling distributions. It is composed of many component samplers, each based on a geometric feature of a robot. A component sampler updates its distribution, using information from the workspace geometry and the current state of the roadmap being constructed. These component samplers are combined through the adaptive hybrid sampling approach, based on their sampling histories. In the tests on rigid and articulated robots in 2-D and 3-D workspaces, WCO showed strong performance, compared with sampling strategies that use dynamic sampling or workspace information alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Proc. ACM Symp. on Solid Modeling, pp. 249–260 (2001)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multiarmed bandit problem. SIAM J. Computing 32(1), 48–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boor, V., Overmars, M., van der Stappen, A.: The gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1018–1023 (1999)

    Google Scholar 

  5. Burns, B., Brock, O.: Toward optimal configuration space sampling. In: Robotics: Science and Systems (2005)

    Google Scholar 

  6. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, ch.7. The MIT Press, Cambridge (2005)

    Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  9. Foskey, M., Garber, M., Lin, M., Manocha, D.: A Voronoi-based hybrid motion planner. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 55–60 (2001)

    Google Scholar 

  10. Holleman, C., Kavraki, L.: A framework for using the workspace medial axis in PRM planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1408–1413 (2000)

    Google Scholar 

  11. Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robotics Research 25(7), 627–643 (2006)

    Article  Google Scholar 

  12. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comp. Geometry & Applications 9(4–5), 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  13. Hsu, D., Sánchez-Ante, G., Sun, Z.: Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3885–3891 (2005)

    Google Scholar 

  14. Kavraki, L., Kolountzakis, M., Latombe, J.-C.: Analysis of probabilistic roadmaps for path planning. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3020–3025 (1996)

    Google Scholar 

  15. Kavraki, L., Latombe, J.-C., Motwani, R., Raghavan, P.: Randomized query processing in robot path planning. J. Comp. & Syst. Sci. 57(1), 50–60 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kavraki, L., Švestka, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans. on Robotics & Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  17. Kurniawati, H., Hsu, D.: Workspace importance sampling for probabilistic roadmap planning. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 1618–1623 (2004)

    Google Scholar 

  18. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  19. Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.: A machine learning approach for feature-sensitive motion planning. In: Algorithmic Foundations of Robotics VI, pp. 361–376 (2004)

    Google Scholar 

  20. Å vestka, P.: On probabilistic completeness and expected complexity for probabilistic path planning. Technical Report UU-CS-1996-08, Utrecht University, Dept. of Information & Computing Sciences, Utrecht, the Netherlands (1996)

    Google Scholar 

  21. van den Berg, J., Overmars, M.: Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. Int. J. Robotics Research 24(12), 1055–1071 (2005)

    Article  Google Scholar 

  22. Yang, Y., Brock, O.: Adapting the sampling distribution in PRM planners based on an approximated medial axis. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4405–4410 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurniawati, H., Hsu, D. (2008). Workspace-Based Connectivity Oracle: An Adaptive Sampling Strategy for PRM Planning. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics