Skip to main content

RESAMPL: A Region-Sensitive Adaptive Motion Planner

  • Chapter

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 47)

Abstract

Automatic motion planning has applications ranging from traditional robotics to computer-aided design to computational biology and chemistry. While randomized planners, such as probabilistic roadmap methods (prms) or rapidly-exploring random trees (rrt), have been highly successful in solving many high degree of freedom problems, there are still many scenarios in which we need better methods, e.g., problems involving narrow passages or which contain multiple regions that are best suited to different planners.

In this work, we present resampl, a motion planning strategy that uses local region information to make intelligent decisions about how and where to sample, which samples to connect together, and to find paths through the environment. Briefly, resampl classifies regions based on the entropy of the samples in it, and then uses these classifications to further refine the sampling. Regions are placed in a region graph that encodes relationships between regions, e.g., edges correspond to overlapping regions. The strategy for connecting samples is guided by the region graph, and can be exploited in both multi-query and single-query scenarios. Our experimental results comparing resampl to previous multi-query and single-query methods show that resampl is generally significantly faster and also usually requires fewer samples to solve the problem.

Keywords

  • Motion Planning
  • Medial Axis
  • Region Graph
  • Narrow Passage
  • Region Construction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-68405-3_18
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-68405-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C.V., Vallejo, D.: OBPRM: An obstacle-based PRM for 3D workspaces. In: Robotics: The Algorithmic Perspective. Proc. Third Workshop on Algorithmic Foundations of Robotics (WAFR), Houston, TX, Natick, MA, pp. 155–168. A.K. Peters (1998)

    Google Scholar 

  2. Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C.V., Vallejo, D.: Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Trans. Robot. Automat. 16(4), 442–447 (2000)

    CrossRef  Google Scholar 

  3. Bohlin, R., Kavraki, L.E.: Path planning using Lazy PRM. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 521–528 (2000)

    Google Scholar 

  4. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 1018–1023 (1999)

    Google Scholar 

  5. Burns, B., Brock, O.: Sampling-based motion planning using predictive models. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2005)

    Google Scholar 

  6. Burns, B., Brock, O.: Toward optimal configuration space sampling. In: Proc. Robotics: Sci. Sys. (RSS) (2005)

    Google Scholar 

  7. Foskey, M., Garber, M., Lin, M., Manocha, D.: A voronoi-based hybrid motion planner. In: Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems (IROS 2001) (2001)

    Google Scholar 

  8. Gottschalk, S., Lin, M.C., Manocha, D.: OBB-tree: A hierarchical structure for rapid interference detection. Comput. Graph. 30, 171–180 (1996); Proc. SIGGRAPH 1996

    Google Scholar 

  9. Hsu, D., Jiang, T., Reif, J., Sun, Z.: Bridge test for sampling narrow passages with proabilistic roadmap planners. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 4420–4426 (2003)

    Google Scholar 

  10. Hsu, D., Sánchez-Ante, G., Sun, Z.: Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3885–3891 (2005)

    Google Scholar 

  11. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    CrossRef  Google Scholar 

  12. Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 995–1001 (2000)

    Google Scholar 

  13. La Valle, S.M., Kuffner, J.J.: Rapidly-Exploring Random Trees: Progress and Prospects. In: Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), pp. SA45–SA59 (2000)

    Google Scholar 

  14. Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.M.: A machine learning approach for feature-sensitive motion planning. In: Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), Utrecht/Zeist, The Netherlands, pp. 316–376 (July 2004)

    Google Scholar 

  15. Nielsen, C.L., Kavraki, L.E.: A two level fuzzy PRM for manipulation planning. Technical Report TR2000-365, Computer Science, Rice University, Houston, TX (2000)

    Google Scholar 

  16. Redon, S., Lin, M.C.: Practical local planning in the contact space. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (April 2005)

    Google Scholar 

  17. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proc. IEEE Symp. Foundations of Computer Science (FOCS), San Juan, Puerto Rico, pp. 421–427 (October 1979)

    Google Scholar 

  18. Rodriguez, S., Thomas, S., Pearce, R., Amato, N.M.: Resampl: A region-sensitive adaptive motion planner. Technical Report TR06-004, Parasol Lab, Dept. of Computer Science, Texas A&M University (March 2006)

    Google Scholar 

  19. Song, G., Miller, S.L., Amato, N.M.: Customizing PRM roadmaps at query time. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1500–1505 (2001)

    Google Scholar 

  20. Varadhan, G., Manocha, D.: Star-shaped roadmaps: A deterministic sampling approach for complete motion planning. In: Proc. Robotics: Sci. Sys. (RSS) (2005)

    Google Scholar 

  21. Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 1024–1031 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodriguez, S., Thomas, S., Pearce, R., Amato, N.M. (2008). RESAMPL: A Region-Sensitive Adaptive Motion Planner. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)