Skip to main content

A Simple Path Non-existence Algorithm Using C-Obstacle Query

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

We present a simple algorithm to check for path non-existence for a robot among static obstacles. Our algorithm is based on adaptive cell decomposition of configuration space or C-space. We use two basic queries: free cell query, which checks whether a cell in C-space lies entirely inside the free space, and C-obstacle cell query, which checks whether a cell lies entirely inside the C-obstacle region. Our approach reduces the path non-existence problem to checking whether there exists a path through cells that do not belong to the C-obstacle region. We describe simple and efficient algorithms to perform free cell and C-obstacle cell queries using separation distance and generalized penetration depth computations. Our algorithm is simple to implement and we demonstrate its performance on 3 DOF robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, N., Bayazit, O., Dale, L., Jones, C., Vallejo, D.: Obprm: An obstacle-based prm for 3d workspaces. In: Proceedings of WAFR 1998, pp. 197–204 (1998)

    Google Scholar 

  2. Avnaim, F., Boissonnat, J.-D.: Practical exact motion planning of a class of robots with three degrees of freedom. In: Proc. of Canadian Conference on Computational Geometry, p. 19 (1989)

    Google Scholar 

  3. Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: Proc. IEEE International Conference on Robotics and Automation (2001)

    Google Scholar 

  4. Brooks, R.A., Lozano-Pérez, T.: A subdivision algorithm in configuration space for findpath with rotation. IEEE Trans. Syst. SMC-15, 224–233 (1985)

    Google Scholar 

  5. Cameron, S.: Enhancing GJK: Computing minimum and penetration distance between convex polyhedra. In: IEEE International Conference on Robotics and Automation, pp. 3112–3117 (1997)

    Google Scholar 

  6. Canny, J.: The Complexity of Robot Motion Planning. ACM Doctoral Dissertation Award. MIT Press, Cambridge (1988)

    Google Scholar 

  7. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press, Cambridge

    Google Scholar 

  8. Donald, B.R.: Motion planning with six degrees of freedom. Master’s thesis, MIT Artificial Intelligence Lab, AI-TR-791 (1984)

    Google Scholar 

  9. Halperin, D.: Robust geometric computing in motion. International Journal of Robotics Research 21(3), 219–232 (2002)

    Article  Google Scholar 

  10. Hsu, D., Kavraki, L., Latombe, J., Motwani, R., Sorkin, S.: On finding narrow passages with probabilistic roadmap planners. In: Proc. of 3rd Workshop on Algorithmic Foundations of Robotics, pp. 25–32 (1998)

    Google Scholar 

  11. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  12. Kedem, K., Sharir, M.: An automatic motion planning system for a convex polygonal mobile robot in 2-d polygonal space. In: ACM Symposium on Computational Geometry, pp. 329–340 (1988)

    Google Scholar 

  13. Kim, Y., Lin, M., Manocha, D.: Deep: Dual-space expansion for estimating penetration depth between convex polytopes. In: Proc. IEEE International Conference on Robotics and Automation (May 2002)

    Google Scholar 

  14. Latombe, J.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  15. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), http://msl.cs.uiuc.edu/planning/

    MATH  Google Scholar 

  16. Lozano-Pérez, T.: Spatial planning: A configuration space approach. IEEE Trans. Comput. C-32, 108–120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lozano-Pérez, T., Wesley, M.: An algorithm for planning collision-free paths among polyhedral obstacles. Comm. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  18. Paden, B., Mess, A., Fisher, M.: Path planning using a jacobian-based freespace generation algorithm. In: Proceedings of International Conference on Robotics and Automation (1989)

    Google Scholar 

  19. Pisula, C., Hoff, K., Lin, M., Manocha, D.: Randomized path planning for a rigid body based on hardware accelerated voronoi sampling. In: Proc. of 4th International Workshop on Algorithmic Foundations of Robotics (2000)

    Google Scholar 

  20. Schwartz, J.T., Sharir, M.: On the piano movers probelem ii, general techniques for computing topological properties of real algebraic manifolds. Advances of Applied Maths 4, 298–351 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schwarzer, F., Saha, M., Latombe, J.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Tr. on Robotics 21(3), 338–353 (2005)

    Article  Google Scholar 

  22. Simeon, T., Laumond, J.P., Nissoux, C.: Visibility based probabilistic roadmaps for motion planning. Advanced Robotics Journal 14(6) (2000)

    Google Scholar 

  23. van den Bergen, G.: Proximity queries and penetration depth computation on 3d game objects. In: Game Developers Conference (2001)

    Google Scholar 

  24. Varadhan, G., Manocha, D.: Star-shaped roadmaps - a deterministic sampling approach for complete motion planning. In: Proceedings of Robotics: Science and Systems, Cambridge, USA (June 2005)

    Google Scholar 

  25. Zhang, L., Kim, Y., Varadhan, G., Manocha, D.: Generalized penetration depth computation. In: ACM Solid and Physical Modeling Symposium (SPM 2006), pp. 173–184 (2006)

    Google Scholar 

  26. Zhang, L., Kim, Y., Varadhan, G., Manocha, D.: Fast c-obstacle query computation for motion planning. In: IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 3035–3040 (2006)

    Google Scholar 

  27. Zhu, D., Latombe, J.: Constraint reformulation in a hierarchical path planner. In: Proceedings of International Conference on Robotics and Automation, pp. 1918–1923 (1990)

    Google Scholar 

  28. Zhu, D., Latombe, J.: New heuristic algorithms for efficient hierarchical path planning. IEEE Trans. on Robotics and Automation 7(1), 9–20 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, L., Kim, Y.J., Manocha, D. (2008). A Simple Path Non-existence Algorithm Using C-Obstacle Query. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics