Skip to main content

Large ocean phenomena with human impact

  • Chapter
  • First Online:
Discovering the Ocean from Space

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 4807 Accesses

Abstract

The goal throughout this book is not simply to present the variety of applications of remote sensing in marine science, but particularly to identify unique contributions to revealing and understanding ocean phenomena made possible by the observational capabilities of sensors viewing the sea from orbiting satellites. In some cases the discovery of new scientific knowledge is mainly of academic interest, but in others it reaches more widely into human society and its application can make an impact on people’s daily lives. This chapter presents examples of such applications. It examines a few separate phenomena that have two things in common: first, they affect the safety and economic wellbeing of significant numbers of people as well as the health of the global environment; second, they rely on, or have the potential to benefit from, satellite oceanography methods to obtain data used for warnings, forecasts, and improved understanding of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablain, M., J. Dorandeu, P.-Y. L. Traon, and A. Sladen (2006), High resolution altimetry reveals new characteristics of the December 2004 Indian Ocean tsunami. Geophys. Res. Letters, 33(L21602), doi: 10.1029/2006GL027533.

    Google Scholar 

  • Adler, R. F., J. Susskind, G. J. Huffman, D. Bolvin, E. Nelkin, A. Chang, R. Ferraro, A. Gruber, P.-P. Xie et al. (2003), The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 4, 1147–1167.

    Article  Google Scholar 

  • Allan, T. (2006), The story of GANDER. Sensors, 6, 249–259.

    Article  Google Scholar 

  • Allen, R., J. Lindesay, and D. Parker (1996), El Niño Southern Oscillation and Climatic Variability (405 pp.). CSIRO Publishing, Collingwood, Victoria, Australia.

    Google Scholar 

  • Anderson, D. L. T., and M. K. Davey (1998), Predicting the El Niño of 1997/98. Weather, 53, 303–309.

    Article  Google Scholar 

  • Askne, J., and W. Direking (2008), Sea ice monitoring in the Arctic and Baltic Sea using SAR. In: V. Barale and M. Gade (Eds.), Remote Sensing of the European Seas (pp. 383-398). Springer-Verlag, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Barnston, A. G., M. H. Glantz, and X. He (1999), Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niñ o episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc., 80, 217–243.

    Article  Google Scholar 

  • Bindoff, N. L., J. Willebrand, V. Artale, C. A. J. Gregory, S. Gulev, K. Hanawa, C. L. Quéré, S. Levitus, Y. Nojiri et al. (2007), Observations: Oceanic climate change and sea level. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 385-432). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Bonjean, F., and G. S. E. Lagerloef (2002), Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32(10), 2938–2954.

    Article  Google Scholar 

  • Carsey, F. (1992), Microwave Remote Sensing of Sea Ice (Geophysical Monograph Series, 478 pp.). American Geophysical Union, Washington, D.C.

    Book  Google Scholar 

  • Casey, K. S., and P. Cornillon (1999), A comparison of satellite and in situ-based sea surface temperature climatologies. J. Climate, 12, 1848–1863.

    Article  Google Scholar 

  • Cavalieri, D. C., P. Gloersen, and W. J. Campbell (1984), Determination of sea ice parameters with the NIMBUS-7 SMMR. J. Geophys. Res., 89(D4), 5355–5369.

    Article  Google Scholar 

  • Cavalieri, D. C., K. M. St. Germain, and C. T. Swift (1995), Reduction of weather effects in the calculation of sea ice concentration with the DMSP SSM/I. J. Glaciology, 41(139), 455–464.

    Google Scholar 

  • Cavalieri, D. C., J. Crawford, M. R. Drinkwater, D. Eppler, L. D. Farmer, R. R. Jentz, and C. C. Wackerman (1991), Aircraft active and passive microwave validation of sea ice concentration from the DMSP SSM/I. J. Geophys. Res., 96(C12), 21989–22009.

    Article  Google Scholar 

  • Changnon, S. A., and G. D. Bell (2000), El Niño, 1997–1998: The Climate Event of the Century (215 pp.). Oxford University Press, New York.

    Google Scholar 

  • Charrassin, J.-B., M. Hindell, S. R. Rintoul, F. Roquet, S. Sokolov, M. Biuw, D. Costa, L. Boehme, P. Lovell, R. Coleman et al. (2008), Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc Nat. Acad. Sci. U.S.A., 105(33), 11634–11639.

    Article  Google Scholar 

  • Chavez, F. P., P. G. Strutton, G. E. Friederich, R. Feely, and G. C. Feldman (1999), Biological and chemical response of the equatorial Pacific Ocean to the 1997–98 El Niño. Science, 286, 2126–2131.

    Article  Google Scholar 

  • Church, J. A., and N. J. White (2006), A 20th century acceleration in global sea-level rise. Geophys. Res. Letters, 33(L01602), doi: 10.1029/2005GL024826.

    Google Scholar 

  • Delcroix, T., J.-P. Boulanger, F. Masia, and C. Menkes (1994), Geosat-derived sea-level and surface-current anomalies in the equatorial Pacific, during the 1986–89 El Niño and La Niña. J. Geophys. Res., 99, 25093–25107.

    Article  Google Scholar 

  • Donlon, C. J., I. S. Robinson, K. S. Casey, J. Vazquez, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. Le Borgne, J.-F. Piolle et al. (2007), The Global Ocean Data Assimilation Experiment (GODAE) High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). Bull. Am. Meteorol. Soc., 88(8), 1197–1213, doi: 10.1175/BAMS-88-8-1197.

    Article  Google Scholar 

  • Fenoglio-Marc, L. (2002), Long-term sea level change in the Mediterranean Sea from multisatellite altimetry and tide gauges. Physics and Chemistry of the Earth, 27, 1419–1431.

    Article  Google Scholar 

  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie (2002, updated 2008), Sea Ice Index. National Snow and Ice Data Center, Boulder, CO, available at http://www.nsidc.org/data/seaice_index

    Google Scholar 

  • Fischer, A. S., R. A. Weller, D. L. Rudnick, C. C. Eriksen, C. M. Lee, K. H. Brink, C. A. Fox, and R. R. Leben (2002), Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep-Sea Res. II, 49(12), 2231–2264.

    Article  Google Scholar 

  • Fu, L.-L., and A. Cazenave (Eds.) (2001), Satellite Altimetry and Earth Sciences (463 pp.). Academic Press, San Diego, CA.

    Google Scholar 

  • Gadgil, S., P. N. Vinayachandran, P. A. Francis, and S. Gadgil (2004), Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Letters, 31(L12213), doi: 10.1029/2004GL019733.

    Google Scholar 

  • Garcia, D., G. Ramillien, A. Lombard, and A. Cazenave (2007), Steric sea-level variations inferred from combined Topex/Poseidon altimetry and GRACE gravimetry. Pure Appl. Geophys., 164, 721–731.

    Article  Google Scholar 

  • Gower, J. F. R. (2005), Jason-1 detects the 26 December 2004 tsunami. EOS, Trans. Amer. Geophys. Union, 86(4), 37–38.

    Article  Google Scholar 

  • Gower, J. F. R. (2007), The 26 December 2004 tsunami measured by satellite altimetry. Int. J. Remote Sensing, 28(13), 2897–2913.

    Article  Google Scholar 

  • Graham, N. E., and T. P. Barnett (1987), Sea surface temperature, sea surface wind divergence, and convection over tropical oceans. Science, 238, 657–659.

    Article  Google Scholar 

  • Hayes, S. P., L. J. Mangum, J. Picaut, A. Sumi, and K. Takeuchi (1991), TOGATAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc., 72, 339–347.

    Article  Google Scholar 

  • Haykin, S., E. O. Lewis, R. K. Raney, and J. R. Rossiter (1994), Remote Sensing of Sea Ice and Icebergs (686 pp.). John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Høyer, J. L., and O. B. Andersen (2003), Improved description of sea level in the North Sea. J. Geophys. Res., 108(C5), 3163, doi: 10.1029/2002JC001601.

    Article  Google Scholar 

  • Ji, M., and A. Leetma (1997), Impact of data assimilation on ocean initialization and El Nino prediction. Mon. Weather Rev., 125, 741–753.

    Article  Google Scholar 

  • Johnson, E. S., F. Bonjean, G. S. E. Lagerloef, J. T. Gunn, and G. T. Mitchum (2007), Validation and error analysis of OSCAR sea surface currents. J. Atmos. Oceanic Tech., 24, 688–701.

    Article  Google Scholar 

  • Kyte, E. A., G. D. Quartly, M. A. Srokosz, and M. N. Tsimplis (2006), Interannual variations in precipitation: The effect of the North Atlantic and Southern Oscillations as seen in a satellite precipitation data set and in models. J. Geophys. Res., 111(D24113).

    Google Scholar 

  • Lagerloef, G. S. E., G. T. Mitchum, R. Lukas, and P. Niiler (1999), Tropical Pacific near surface currents estimated from altimeter, wind and drifter data. J. Geophys. Res., 104, 23313–23326.

    Article  Google Scholar 

  • Lagerloef, G. S. E., R. Lukas, F. Bonjean, J. T. Gunn, G. T. Mitchum, M. Bourassa, and A. J. Busalacchi (2003), El Niñ o Tropical Pacific Ocean surface current and temperature evolution in 2002 and outlook for early 2003. Geophys. Res. Letters, 30(10), 1514.

    Article  Google Scholar 

  • Larnicol, G., N. Ayoub, and P. Y. Le Traon (2002), Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. J. Mar. Syst., 33/34, 63–89.

    Article  Google Scholar 

  • Le Provost, C. (2001), Ocean tides. In: L.-L. Fu and A. Cazenave (Eds.), Satellite Altimetry and Earth Sciences (pp. 267–303). Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Le Traon, P.-Y., F. Nadal, and N. Ducet (1998), An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Tech., 15, 522–534.

    Article  Google Scholar 

  • Legeckis, R. (1986), A satellite time series of sea surface temperatures in the Eastern Equatorial Pacific Ocean, 1982–1986. J. Geophys. Res., 91(C11), 12879–12886.

    Article  Google Scholar 

  • Leuliette, E. W., R. S. Nerem, and T. Jakub (2006), An assessment of IPCC 20th century climate simulations using the 15-year sea level record from altimetry. Paper presented at 15 Years of Progress in Radar Altimetry, Venice, Italy, March 13–18, available at earth. esa.int/workshops/venice06/participants/1181/paper_1181_leuliette.pdf

    Google Scholar 

  • Leuliette, E. W., R. S. Nerem, and G. T. Mitchum (2004), Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy, 27(1), 79–94.

    Article  Google Scholar 

  • Liu, W. T., and X. Xie (1999), Spacebased observations of the seasonal changes of South Asian monsoons and oceanic responses. Geophys. Res. Letters, 26(10), 1473–1476.

    Article  Google Scholar 

  • Lombard, A., A. Cazenave, P.-Y. Le Traon, S. Guinehut, and C. Cabanes (2006), Perspectives on present-day sea level change: A tribute to Christian le Provost. Ocean Dynamics, 6(5/6), 445–451.

    Article  Google Scholar 

  • Lubin, D., and R. Massom (2006), Polar Remote Sensing: Atmosphere and Oceans (xliiþ756 pp.). Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Lutchke, S. B., N. P. Zelensky, D. D. Rowlands, F. G. Lemoine, and T. A. Williams (2003), The 1-centimeter orbit: Jason-1 precise orbit determination using GPS, SLR, DORIS and altimeter data. Marine Geodesy, 26(3/4), 399–421.

    Google Scholar 

  • McClain, C. R., J. R. Christian, R. S. Signorini, M. R. Lewis, and I. Asanuma (2002), Satellite ocean-color observations of the tropical Pacific Ocean. Deep-Sea Res. II, 49, 2522–2560.

    Article  Google Scholar 

  • McPhaden, M. J. (1999), Genesis and evolution of the 1997–98 El Niño. Science, 283, 950–954.

    Article  Google Scholar 

  • McPhaden, M. J., A. J. Busalacchi, R. Cheney, J.-R. Donguy, K. S. Gage, D. Halpern, M. Ji, P. Julian, G. Meyers, G. T. Mitchum et al. (1998), The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103(C7), 14169–14240.

    Article  Google Scholar 

  • Ménard, Y., L.-L. Fu, S. Desai, P. Escudier, B. Haines, G. Kunstmann, F. Parisot, J. Perbos, and P. Vincent (2003), The Jason-1 mission. Marine Geodesy, 26(3/4), 131–146.

    Article  Google Scholar 

  • Mitchum, G. T. (1994), Comparison of TOPEX sea-surface heights and tide-gauge sea levels. J. Geophys. Res., 99(C12), 24541–24553.

    Article  Google Scholar 

  • Mitchum, G. T. (1998), Monitoring the stability of satellite altimeters with tide gauges. J. Atmos. Oceanic Tech., 15(3), 721–730.

    Article  Google Scholar 

  • Mitchum, G. T. (2000), An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Marine Geodesy, 23, 145–166.

    Article  Google Scholar 

  • Murakami, H., J. Ishizaka, and H. Kawamura (2000), ADEOS observations of chlorophyll a concentration, sea surface temperature, and wind stress change in the equatorial Pacific during the 1997 El Niño. J. Geophys. Res., 105(C8), 19551–19559.

    Article  Google Scholar 

  • Murtugudde, R. G., R. S. Signorini, J. R. Christian, A. J. Busalacchi, C. R. McClain, and J. Picaut (1999), Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–98. J. Geophys. Res., 104, 18351–18366.

    Article  Google Scholar 

  • Nerem, R. S., and G. T. Mitchum (2001), Sea level change. In: L.-L. Fu and A. Cazenave (Eds.), Satellite Altimetry and Earth Sciences (pp. 329–350). Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Nerem, R. S., J. M. Wahr, and E. W. Leuliette (2003), Measuring the distribution of ocean mass using GRACE. Space Science Reviews, 108(1), 331–344.

    Article  Google Scholar 

  • Nerem, R. S., A. Cazenave, D. P. Chambers, L.-L. Fu, E. W. Leuliette, and G. T. Mitchum (2007), Comment on ‘‘Estimating future sea level change from past records by Nils-Axel Mörner’’. Global and Planetary Change, 55(4), 358–360.

    Article  Google Scholar 

  • Okal, E., A. Piatanesi, and P. Heinrich (1999), Tsunami detection by satellite altimetry. J. Geophys. Res., 104(B1), 599–615.

    Google Scholar 

  • Onstott, R. G., and R. Shuchman (2005), SAR measurements of sea ice. In: C. R. Jackson and J. R. Apel (Eds.), Synthetic Aperture Radar Marine User’s Manual (pp. 81–115). U.S. Department of Commerce, Silver Spring, MD.

    Google Scholar 

  • Parthasarathy, B., R. R. Kumar, and D. R. Kothawale (1992), Indian summer monsoon rainfall indices, 1871–1990. Meteor. Mag., 121, 174–186.

    Google Scholar 

  • Perovich, D. K., and J. A. Richter-Menge (2009), Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci., 1, 417–441.

    Article  Google Scholar 

  • Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard (2006), Trajectory shifts in the Arctic and subarctic freshwater cycle. Science, 313(5790), 1061–1066.

    Article  Google Scholar 

  • Philander, S. G. H. (1990), El Niño, La Niña, and the Southern Oscillation (International Geophysics Series, 293 pp.). Academic Press, San Diego, CA.

    Google Scholar 

  • Picaut, J., E. Hackert, A. J. Busalacchi, R. Murtugudde, and G. S. E. Lagerloef (2002), Mechanisms of the 1997–1998 El Niñ o–La Niñ a, as inferred from space-based observations. J. Geophys. Res., 107(C5), doi: 10.1029/2001JC000850.

    Article  Google Scholar 

  • Quartly, G. D., T. H. Guymer, and M. A. Srokosz (1996), The effects of rain on Topex radar altimeter data. J. Atmos. Oceanic Technol., 13, 1209–1229.

    Article  Google Scholar 

  • Quartly, G. D., M. A. Srokosz, and T. H. Guymer (1999), Global precipitation statistics from dual-frequency Topex altimetry. J. Geophys. Res., 104(D24), 31489–31516.

    Article  Google Scholar 

  • Quartly, G. D., M. A. Srokosz, and T. H. Guymer (2000), Changes in oceanic precipitation during the 1997–98 El Niño. Geophys. Res. Lett., 27(15), 2293–2296.

    Article  Google Scholar 

  • Rahmstorf, S. (2006), Thermohaline ocean circulation. In: S. A. Elias (Ed.), Encyclopedia of Quaternary Sciences Elsevier, Amsterdam.

    Google Scholar 

  • Ramesh Kumar, M. R., S. Sankar, K. Fennig, D. S. Pai, and J. Schulz (2005), Air–sea interaction over the Indian Ocean during the contrasting monsoon years 2002 and 2003. Geophys. Res. Letters, 32(L14821), doi: 10.1029/2005GL022587.

    Google Scholar 

  • Rees, G. (2005), Remote Sensing of Snow and Ice (285 pp.). Taylor & Francis/CRC Press, London/Boca Raton, FL.

    Book  Google Scholar 

  • Robinson, I. S. (2004), Measuring the Ocean from Space: The Principles and Methods of Satellite Oceanography (669 pp.). Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Ryan, J. P., P. S. Polito, P. G. Strutton, and F. P. Chavez (2002), Unusual large-scale phytoplankton blooms in the equatorial Pacific. Prog. Oceanogr., 55, 263–285.

    Article  Google Scholar 

  • Scharroo, R., W. H. F. Smith, and J. L. Lillibridge (2005), Satellite altimetry and the intensification of hurricane Katrina. EOS, Trans. Amer. Geophys. Union, 86(40), 366–367.

    Article  Google Scholar 

  • Strutton, P. G., J. P. Ryan, and F. P. Chavez (2001), Enhanced chlorophyll associated with tropical instability waves in the equatorial Pacific. Geophys. Res. Letters, 28(10), 2005–2008.

    Article  Google Scholar 

  • Subrahmanyam, B., and I. S. Robinson (2000), Sea surface height variability in the Indian Ocean from TOPEX/POSEIDON altimetry and model simulations. Marine Geodesy, 23, 167–195.

    Article  Google Scholar 

  • Subrahmanyam, B., V. Ramesh Babu, V. S. N. Murty, and L. V. G. Rao (1996), Surface circulation offSomalia and western equatorial Indian Ocean during summer monsoon of 1992 from Geosat altimeter data. Int. J. Remote Sensing, 17, 761–770.

    Article  Google Scholar 

  • Tapley, B. D., and M.-C. Kim (2001), Applications to geodesy. In: L.-L. Fu and A. Cazenave (Eds.), Satellite Altimetry and Earth Sciences (pp. 371–406). Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Tsimplis, M. N., A. G. P. Shaw, A. Pascual, M. Marcos, M. Pasaric, and L. Fenoglio-Marc (2008), Can we reconstruct the 20th century sea level variability in the Mediterranean Sea on the basis of recent altimetric measurements? In: V. Barale and M. Gade (Eds.), Remote Sensing of the European Seas (pp. 307–318). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Wadhams, P. (2000), Ice in the Ocean (351 pp.). Gordon & Breach, London.

    Google Scholar 

  • Wang, B., and Z. Fan (1999), Choice of South Asian summer monsoon indices. Bull. Am. Meteorol. Soc., 80(4), 629–638.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang (1992), Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteorol. Soc., 118, 877–926.

    Article  Google Scholar 

  • Weller, R. A., A. S. Fischer, D. L. Rudnick, C. C. Eriksen, T. D. Dickey, J. Marra, C. Fox, and R. Leben (2002), Moored observations of upper-ocean response to the monsoons in the Arabian Sea during 1994–1995. Deep-Sea Res. II, 49(12), 2195–2230.

    Article  Google Scholar 

  • Woolf, D. K., and C. P. Gommenginger (2008), Radar altimetry: Introduction and application to air–sea interaction. In: V. Barale and M. Gade (Eds.), Remote Sensing of the European Seas (pp. 283–294). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Woolf, D. K., A. G. P. Shaw, and M. N. Tsimplis (2003), The influence of the North Atlantic Oscillation on sea-level variability in the North Atlantic region. J. Atm. Ocean Sci. (previously The Global Atmosphere and Ocean System), 9(4), 145–167.

    Article  Google Scholar 

  • Xue, Y., T. M. Smith, and R. Reynolds (2003), Interdecadal changes of 30-year SST normals during 1871–2000. J. Climate, 16, 1601–1612.

    Article  Google Scholar 

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen (2002), Variability of the Antarctic sea ice cover. J. Geophys. Res., 107(C5), 1029–1047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, I.S. (2010). Large ocean phenomena with human impact. In: Discovering the Ocean from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68322-3_11

Download citation

Publish with us

Policies and ethics