Skip to main content

Cadherins in Development

  • Chapter
Cell Adhesion

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 165))

Abstract

The cadherin family of cell adhesion molecules has emerged as a key regulator of embryonic morphogenesis. Although we are beginning to learn more about the developmental functions of non-classic cadherins, most of our current knowledge of the involvement of cadherins in various cellular processes that guide morphogenesis, such as adhesion, migration, cell shape changes, proliferation, and survival are based on the analysis of classic cadherins. Key issues for future studies include deeper knowledge of how the regulation of cadherin activity contributes to specific aspects of morphogenesis, and whether all cadherin-mediated morphogenetic activities can be directly or indirectly attributed to its role in cell-cell adhesion or whether they are executed via adhesion-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler PN, Lee H (2001) Frizzled signaling and cell-cell interactions in planar polarity. Curr Opin Cell Biol 13:635–640

    Article  CAS  PubMed  Google Scholar 

  • Adler PN, Charlton J, Liu J (1998) Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling. Development 125:959–968

    CAS  PubMed  Google Scholar 

  • Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z (2003) Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 4:11–18

    Article  CAS  PubMed  Google Scholar 

  • Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115:53–62

    Article  CAS  PubMed  Google Scholar 

  • Braga VM (2002) Cell-cell adhesion and signalling. Curr Opin Cell Biol 14:546–556

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  CAS  PubMed  Google Scholar 

  • Chihara T, Kato K, Taniguchi M, Ng J, Hayashi S (2003) Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR (1998) A putative catenincadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141:297–308

    Article  CAS  PubMed  Google Scholar 

  • Dahl U, Sjodin A, Larue L, Radice GL, Cajander S, Takeichi M, Kemler R, Semb H (2002) Genetic dissection of cadherin function during nephrogenesis. Mol Cell Biol 22:1474–1487

    Article  CAS  PubMed  Google Scholar 

  • Duband JL, Volberg T, Sabanay I, Thiery JP, Geiger B (1988) Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis. Development 103:325–344

    CAS  PubMed  Google Scholar 

  • Dufour S, Beauvais-Jouneau A, Delouvee A, Thiery JP (1999) Differential function of N-cadherin and cadherin-7 in the control of embryonic cell motility. J Cell Biol 146:501–516

    Article  CAS  PubMed  Google Scholar 

  • Feiguin F, Hannus M, Mlodzik M, Eaton S (2001) The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev Cell 1:93–101

    Article  CAS  PubMed  Google Scholar 

  • Fukata M, Kaibuchi K (2001) Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2:887–897

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Castro MI, Vielmetter E, Bronner-Fraser M (2000) N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science 288:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Godt D, Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395:387–391

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, St Johnston D (1994) Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science 266:639–642

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, St Johnston D (1998) The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125:3635–3644

    CAS  PubMed  Google Scholar 

  • Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  PubMed  Google Scholar 

  • Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120:215–227

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Suzuki ST, Redies CM (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8: D306–D355

    Article  CAS  PubMed  Google Scholar 

  • Hollnagel A, Grund C, Franke WW, Arnold HH (2002) The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 22:4760–4770

    Article  CAS  PubMed  Google Scholar 

  • Horikawa K, Radice G, Takeichi M, Chisaka O (1999) Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 215:182–189

    Article  CAS  PubMed  Google Scholar 

  • Horsfield J, Ramachandran A, Reuter K, LaVallie E, Collins-Racie L, Crosier K, Crosier P (2002) Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mech Dev 115:15–26

    Article  CAS  PubMed  Google Scholar 

  • Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934

    Article  CAS  PubMed  Google Scholar 

  • Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, Uemura T (1997) Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19:77–89

    Article  CAS  PubMed  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  • Kostetskii I, Moore R, Kemler R, Radice GL (2001) Differential adhesion leads to segregation and exclusion of N-cadherin-deficient cells in chimeric embryos. Dev Biol 234:72–79

    Article  CAS  PubMed  Google Scholar 

  • Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91:8263–8267

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Gumbiner BM (1995) Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin. Dev Biol 171:363–373

    Article  CAS  PubMed  Google Scholar 

  • Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L (2002) parachute/N-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129:3281–3294

    CAS  PubMed  Google Scholar 

  • Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Ferreira-Cornwell M, Baldwin H, Kostetskii I, Lenox J, Lieberman M, Radice G (2001) Rescuing the N-cadherin knockout by cardiac-specific expression of N-or E-cadherin. Development 128:459–469

    CAS  PubMed  Google Scholar 

  • Marrs JA, Nelson WJ (1996) Cadherin cell adhesion molecules in differentiation and embryogenesis. Int Rev Cytol 165:159–205

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takeichi M (1995) Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121:1321–1332

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takeichi M (1998) Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125:2963–29671

    CAS  PubMed  Google Scholar 

  • Niewiadomska P, Godt D, Tepass U (1999) DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144:533–547

    Article  CAS  PubMed  Google Scholar 

  • Price SR, De Marco Garcia NV, Ranscht B, Jessell TM (2002) Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109:205–216

    Article  CAS  PubMed  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78

    Article  CAS  PubMed  Google Scholar 

  • Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MF (2002) Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 4:798–805

    Article  CAS  PubMed  Google Scholar 

  • Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A 92:855–859

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    Article  CAS  PubMed  Google Scholar 

  • Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914

    CAS  PubMed  Google Scholar 

  • Steinberg MS (1962) On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc Natl Acad Sci USA 48:1577–1582

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MS (1963) Reconstruction of tissues by dissociated cells. Science 141:401–408

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MS (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool 173:395–433

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    CAS  PubMed  Google Scholar 

  • Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Torok T, Hartenstein V (1996) shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10:672–685

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Truong K, Godt D, Ikura M, Peifer M (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y, Takeichi M (1996) Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 10:659–671

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595

    Article  CAS  PubMed  Google Scholar 

  • Vleminckx K, Kemler R (1999) Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 21:211–220

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85

    Article  CAS  PubMed  Google Scholar 

  • Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580

    CAS  PubMed  Google Scholar 

  • Yagi T, Takeichi M (2000) Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 14:1169–1180

    CAS  PubMed  Google Scholar 

  • Yamamoto A, Amacher SL, Kim SH, Geissert D, Kimmel CB, De Robertis EM (1998) Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development 125:3389–3397

    CAS  PubMed  Google Scholar 

  • Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, Takada S, Nishida E (2002) JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep 3:69–75

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Brieher WM, Gumbiner BM (1999) Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J Cell Biol 144:351–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Semb, H. (2004). Cadherins in Development. In: Behrens, J., Nelson, W.J. (eds) Cell Adhesion. Handbook of Experimental Pharmacology, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68170-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68170-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20941-6

  • Online ISBN: 978-3-540-68170-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics