Skip to main content

Modeling and Simulation of Airway Tissues Stresses during Pulmonary Recruitment

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Soft Computing ((AINSC,volume 47))

Summary

In the present study the goal was to quantify the stresses acting locally on pulmonary epithelial cells in order to better understand the dynamic behavior of these cells. To quantify mechanotransduction responses, one must first understand the magnitude and distribution of stresses on the epithelial cells. It was investigated a two-dimensional, mathematical model of airway reopening, using a flow-driven semi-infinite bubble progressing through an airway as it clears a liquid occlusion was created. The flow in this system was highly viscous, and thus was governed by Stokes equations. This 2-D model was solved computationally using the boundary element method (BEM) in conjunction with lubrication approximations. Algebraic expressions were developed that could be used simply and accurately predict the fluid stress based upon the fluid viscosity, μ, channel height, H, cell size, A, and flow-rate, Q. From the solution, it was determined the stationary-state stresses acting on the epithelial cells. The results indicated that the magnitude of both the x- and y-stresses acting on the walls’ cells were directly related to the cell protuberance topography and produced a complex stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyers, T.M., Fowler, A.A.: Adult respiratory distress syndrome: causes, morbidity, and moralitity. Annu Rev. Med. 40, 431–446 (1998)

    Google Scholar 

  2. Murray, J.F., Matthay, M.A., Luce, J.M., Flick, M.R.: An expanded definition of the adult respiratory distress syndrome. Am. Rev. Respir. 139, 1065–1081 (1998)

    Google Scholar 

  3. Whitehead, T., Slutsky, A.S.: The pulmonary physician in critical care * 7: ventilator induced lung injury. Thorax 57, 635–642 (2002)

    Article  Google Scholar 

  4. Dos Santos, C.C., Slutsky, A.S.: Invited review: mechanisms of ventilator-induced lung injury: a perspective. J. Appl. Physiol. 89, 1645–1655 (2000)

    Google Scholar 

  5. Burger, E.J., Macklem, P.: Airway closure demonstration by breathing 100% O2 at low lung volumes and by N2 washout. J. Appl. Physiol. 25, 139–148 (1968)

    Google Scholar 

  6. Pozrikidis, C.: Shear flow over a protuberance on a plane wall. J. Eng. Math. 31, 29–42 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Konstantopoulos, K., McIntire, L.V.: Cell adhesion in vascular biology. J. Clin. Invest. 98, 2661–2665 (1996)

    Article  Google Scholar 

  8. Tschumperlin, D.J., Oswari, J., Margulies, A.S.: Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am. J. Respir. Crit Care. Med. 162, 357–362 (2000)

    Google Scholar 

  9. Taskar, V., John, J., Evander, E., Wollmer, P., Robertson, B., Jonson, B.: Healthy lung tolerates repetitive collapse and reexpansion. Acta Anaesthesiol Scand 39, 370–376 (1995)

    Article  Google Scholar 

  10. Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28, 596–600 (1970)

    Google Scholar 

  11. Brooks, S.B., Tozeren, A.: Flow past an array of cells that are adherent to the bottom plate of a flow channel. Computers Fluids 25, 741–757 (1996)

    Article  MATH  Google Scholar 

  12. Characklis, W.G., Marshall, K.C.: Biofilms: A basis for an interdisciplinary approach. John Wiley and Sons, New York (1990)

    Google Scholar 

  13. Higdon, J.J.L.: Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J Fluid Mech. 159, 195–226 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halpern, D., Gaver, D.P.: Boundary element analysis of the time-depencent motion of a semi-infinite bubble in a channel. J. Comput. Phys. 115, 366–375 (1994)

    Article  MATH  Google Scholar 

  15. Ladyzenskaya, O.A.: The mathematical theory of viscous incompressible flow. Gordon and Breach, New York (1963)

    Google Scholar 

  16. Leal, L.G.: Laminar flow and convective transport processes: Scaling principles and asymptotic analysis, Butterworth–Heinemann, Boston (1992)

    Google Scholar 

  17. Oliver, L.A., Truskey, G.A.: A numerical analysis of forces exerted on spreading cells in a parallel plate flow chamber assay. Biotechnol Bioeng 42, 963–973 (1993)

    Article  Google Scholar 

  18. Fung, Y.C.: Biodynamics: Circulation. Springer, New York (1984)

    Google Scholar 

  19. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)

    Google Scholar 

  20. Dillon, R.L., Fauci, L., Fogelson, A., Gaver, D.P.: Modeling biofilm processes using immersed boundary method. J. Comput. Phys. 129, 57–73 (1996)

    Article  MATH  Google Scholar 

  21. Brebbia, C.A., Dominquez, J.: Boundary elements—an introductory course, Southampton, England. Computational Mechanics (1989)

    Google Scholar 

  22. Dillon, R.L., Fauci, L., Gaver, D.P.: A microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177, 325–340 (1995)

    Article  Google Scholar 

  23. Ingber, D.E.: Tensegrity, the architectural basis of cellular mechanotransduction. Annu Rev. Physiol. 59, 575–599 (1997)

    Article  Google Scholar 

  24. Gaver, D.P., Halpern, D., Jensen, O.E., Grotberg, J.B.: The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319, 25–65 (1996)

    Article  MATH  Google Scholar 

  25. Ghadiali, S.N., Gaver, D.P.: The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical tube. J. Fluid Mech. 478, 165–196 (2003)

    MATH  Google Scholar 

  26. Suki, B., Barabasi, A.L., Hantos, Z., Petak, F., Stanley, H.E.: Avalanches and power-law behaviour in lung inflation. Nature 368, 615–618 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewa Pietka Jacek Kawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuraszkiewicz, B. (2008). Modeling and Simulation of Airway Tissues Stresses during Pulmonary Recruitment. In: Pietka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Soft Computing, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68168-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68168-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68167-0

  • Online ISBN: 978-3-540-68168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics