Skip to main content

Abstract

The stochastic satisfiability modulo theories (SSMT) problem is a generalization of the SMT problem on existential and randomized (aka. stochastic) quantification over discrete variables of an SMT formula. This extension permits the concise description of diverse problems combining reasoning under uncertainty with data dependencies. Solving problems with various kinds of uncertainty has been extensively studied in Artificial Intelligence. Famous examples are stochastic satisfiability and stochastic constraint programming. In this paper, we extend the algorithm for SSMT for decidable theories presented in [FHT08] to non-linear arithmetic theories over the reals and integers which are in general undecidable. Therefore, we combine approaches from Constraint Programming, namely the iSAT algorithm tackling mixed Boolean and non-linear arithmetic constraint systems, and from Artificial Intelligence handling existential and randomized quantifiers. Furthermore, we evaluate our novel algorithm and its enhancements on benchmarks from the probabilistic hybrid systems domain.

This work has been partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, pp. 571–603. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  2. Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework. In: SAC, pp. 316–320. ACM, New York (2007)

    Google Scholar 

  4. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. CACM 5, 394–397 (1962)

    MathSciNet  MATH  Google Scholar 

  5. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fränzle, M., Herde, C.: HySAT: An Efficient Proof Engine for Bounded Model Checking of Hybrid Systems. FMSD 30, 179–198 (2007)

    MATH  Google Scholar 

  7. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure. JSAT Special Issue on SAT/CP Integration 1, 209–236 (2007)

    Google Scholar 

  8. Fränzle, M., Hermanns, H., Teige, T.: Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems. In: Proceedings of the 11th International Conference on Hybrid Systems: Computation and Control (HSCC 2008) (2008)

    Google Scholar 

  9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for quantified Boolean logic satisfiability. Artif. Intell. 145(1-2), 99–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Littman, M.L.: Initial Experiments in Stochastic Satisfiability. In: Proc.of the 16th National Conference on Artificial Intelligence, pp. 667–672 (1999)

    Google Scholar 

  11. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiability. Journal of Automated Reasoning 27(3), 251–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Majercik, S.M.: Nonchronological backtracking in stochastic Boolean satisfiability. Ictai 00, 498–507 (2004)

    Google Scholar 

  13. Majercik, S.M., Littman, M.L.: MAXPLAN: A New Approach to Probabilistic Planning. Artificial Intelligence Planning Systems, pp. 86–93 (1998)

    Google Scholar 

  14. Majercik, S.M., Littman, M.L.: Contingent Planning Under Uncertainty via Stochastic Satisfiability. Artificial Intelligence Special Issue on Planning With Uncertainty and Incomplete Information 147(1-2), 119–162 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ranise, S., Tinelli, C.: Satisfiability modulo theories. IEEE Intelligent Systems 21(6) (2006)

    Google Scholar 

  17. Teige, T., Herde, C., Fränzle, M., Kalinnik, N., Eggers, A.: A Generalized Two-watched-literal Scheme in a mixed Boolean and Non-linear Arithmetic Constraint Solver. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 729–741. Springer, Heidelberg (2007)

    Google Scholar 

  18. Tarim, A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A scenario-based approach. Constraints 11(1), 53–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th European Conference on Artificial Intelligence (ECAI 2002), IOS Press, Amsterdam (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Laurent Perron Michael A. Trick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teige, T., Fränzle, M. (2008). Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic. In: Perron, L., Trick, M.A. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2008. Lecture Notes in Computer Science, vol 5015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68155-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68155-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68154-0

  • Online ISBN: 978-3-540-68155-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics