Skip to main content

Equilibrium Molecular Dynamics Simulations

  • Chapter

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Molecular dynamics (MD) is a widely used atomistic simulation method due to the detailed information it can provide, often with a relatively small computational investment. The most distinguishing attribute of MD among molecular simulation methods is that it provides a means to monitor the time evolution of a system of particles (usually atoms) in phase space, thus allowing for an atomic-level view of the dynamics of a material in a given equilibrium or nonequilibrium thermodynamic state. This is particularly appealing for those in the energetic materials (EM) community since such a detailed description could reveal the fundamental mechanisms controlling the initiation of an energetic material to detonation, a phenomenon for which direct experimental measurement is in short Superscriptply due to the small time and spatial scales involved and the accompanying large rates of chemical energy release. MD is not affected by any of these factors; rather, its main limitations are the description of interatomic interactions (potential energy functions) used in the simulations and the viability of using classical mechanics to study molecular-scale phenomena. MD is receiving increased use in condensed-phase EM research as interaction potentials emerge that “realistically” describe the chemistry associated with initiation of an EM. However, MD is not limited to studying nonequilibrium dynamic events only; it has proven to be extremely useful for predicting thermodynamic equilibrium properties in the condensed phase.

Often a complete mapping of the equation of state (EOS) or the shock Hugoniot locus for an EM is extremely difficult to accomplish using traditional experimental methods of diamond anvil cells or shock waves [1–3]. Further, off-Hugoniot data can be measured only through the use of specialized equipment designed to study quasi-isentropic compression or using multiple-shock methods in which experimental and analytic uncertainties multiply quickly [4, 5]. MD simulations of any of these states, on the other hand, are straightforward and can readily provide a description of the EM under conditions not amenable to experimentation. Note that in many cases, particularly ones involving dynamic phenomena, the comparison between macroscopic and atomic-based results can be complicated due to the effects of finite simulation domains or slow relaxation phenomena. However, recent increases in time and spatial resolution of experimental diagnostics such as computed microtomography [6, 7] and ultrafast dynamic ellipsometry of laser-driven shocks on thin-film samples [8], which can provide the entire shock Hugoniot based on stress-induced optical effects and low-strain particle motion within a single-shot experiment, enable measurements of properties on scales routinely accessible by molecular simulation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Gump and S. M. Peiris, Isothermal equations of state of beta octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine at high temperatures, J. Appl. Phys. 97, 053513 (2005).

    Google Scholar 

  2. B. Olinger, B. Roof, and H. H. Cady, The linear and volume compression of β-HMX and RDX, Proc. Int. Symp. On High Dynamic Pressures (Paris, CEA, 1978) p. 3.

    Google Scholar 

  3. C.-S. Yoo and H. Cynn, Equation of state, phase transition, decomposition of beta-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures, J. Chem. Phys. 111, 10229 (1999).

    CAS  Google Scholar 

  4. M. R. Baer, C. A. Hall, R. L. Gustavsen, D. E. Hooks, and S. A. Sheffield, Isentropic compression experiments for mesoscale studies of energetic composites, AIP Conf. Proc. 845, 1307 (2006).

    Google Scholar 

  5. B. Crouzet, D. Partouche-Sebban, and N. Carion, Temperature measurements in shocked nitromethane, AIP Conf. Proc. 706, 1253 (2004).

    CAS  Google Scholar 

  6. S. G. Bardenhagen, A. D. Brydon, T. O. Williams, and C. Collet, Coupling grain scale and bulk mechanical response for PBXs using numerical simulations of real microstructures, AIP Conf. Proc. 845, 479 (2006).

    CAS  Google Scholar 

  7. A. D. Brydon, S. G. Bardenhagen, E. A. Miller, and G. T. Seidler, Simulation of the densification of real open-celled foam microstructures, J. Mech. Phys. Solids 53, 2638 (2005).

    CAS  Google Scholar 

  8. C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry, J. Appl. Phys. 102, 033513 (2007).

    Google Scholar 

  9. For instance: T. R. Gibbs and A. Popolato, LASL Explosive Property Data (University of CA, Berkeley, 1980).

    Google Scholar 

  10. T. D. Sewell and R. Menikoff, Complete equation of state for β-HMX and implications for initiation, AIP Conf. Proc. 706, 157 (2004).

    CAS  Google Scholar 

  11. G. A. Ruderman, D. S. Stewart, and J.-I. Yoh, A thermomechanical model for energetic materials with phase transformations, SIAM J. Appl. Math. 63, 510 (2002).

    Google Scholar 

  12. R. Menikoff and M. S. Shaw, Review of the Forest Fire Model, Combust. Theor. Mod. 12, 569 (2008).

    Google Scholar 

  13. W. G. Proud, M. W. Greenaway, C. R. Siviour, H. Czerski, and J. E. Field, Characterizing the response of energetic materials and polymer-bonded explosives (PBXs) to high-rate loading, Mat. Res. Soc. Symp. Proc. 896, 225 (2006).

    Google Scholar 

  14. S. Lecume, C. Boutry, and C. Spyckerelle, Structure of nitramines crystal defects relation with shock sensitivity, Energetic Materials: Structure and Properties, 35th International Conference of ICT, Karlsruhe, FRG, p. 2–1 (2004).

    Google Scholar 

  15. R. Menikoff, Pore collapse and hot spots in HMX, AIP Conf. Proc. 706, 393 (2004).

    Google Scholar 

  16. W. M. Trott, M. R. Baer, J. N. Castaneda, L. C. Chhabildas, and J. R. Asay, Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact, J. Appl. Phys. 101, 024917 (2007).

    Google Scholar 

  17. F. P. Bowden and Y. D. Yoffe, Initiation and growth of explosion in liquids and solids (Cambridge University Press, Cambridge, 1952).

    Google Scholar 

  18. L. Tran and H. S. Udaykumar, Simulation of void collapse in an energetic material, Part 1: Inert case, J. Propul. Pow. 22 947 (2006); ibid, Simulation of void collapse in an energetic material, Part 2: Reactive case, 22, 959 (2006).

    Google Scholar 

  19. R. Menikoff, Detonation waves in PBX 9501, Combust. Theor. Mod. 10, 1003 (2006).

    CAS  Google Scholar 

  20. R. Menikoff, Comparison of constitutive models for plastic-bonded explosives, Combust. Theor. Mod. 12, 73 (2007).

    Google Scholar 

  21. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Molecular Dynamics Simulations of Energetic Materials, in P. Politzer and J. S. Murray (Eds.) Energetic Materials: Part 1. Decomposition, Crystal and Molecular Properties (Theoretical and Computational Chemistry) (Elsevier Science, Amsterdam, 2003) pp. 125 – 184.

    Google Scholar 

  22. D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).

    Google Scholar 

  23. J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P. S. Lomdahl, T. C. Germann, and B. L. Holian, Uniaxial Hugoniostat: A method for atomistic simulations of shocked materials, Phys. Rev. E 63, 016121 (2001).

    Google Scholar 

  24. R. Ravelo, B. L. Holian, T. C. Germann, and P. S. Lomdahl, Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter, Phys. Rev. B 70, 014103 (2004).

    Google Scholar 

  25. J. M. D. Lane and M. Marder, Numerical method for shock front Hugoniot states, AIP Conf. Proc. 845, 331 (2006).

    Google Scholar 

  26. E. J. Reed, L. E. Fried, W. D. Henshaw, and C. M. Tarver, Analysis of simulation technique for steady shock waves in materials with analytical equations of state, Phys. Rev. E 74, 056706 (2006).

    Google Scholar 

  27. E. J. Reed, L. E. Fried, and J. D. Joannopoulos, A method for tractable dynamical studies of single and double shock compression, Phys. Rev. Lett. 90, 235503 (2003).

    Google Scholar 

  28. R. Menikoff and T. D. Sewell, Constituent properties of HMX needed for mesoscale simulations, Combust. Theor. Mod. 6, 103 (2002).

    CAS  Google Scholar 

  29. A. Strachan and B. L. Holian, Energy exchange between mesoparticles and their internal degrees of freedom, Phys. Rev. Lett. 94, 014301 (2005).

    Google Scholar 

  30. Y. Guo, D. L. Thompson, and T. D. Sewell, Analysis of the zero-point energy problem in classical trajectory simulations, J. Chem. Phys. 104, 576 (1996).

    CAS  Google Scholar 

  31. Z. A. Dreger and Y. M. Gupta, High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), J. Phys. Chem. B 111, 3893 (2007).

    CAS  Google Scholar 

  32. T. R. Park, Z. A. Dreger, and Y. M. Gupta, Raman spectroscopy of pentaerythritol single crystals under high pressures, J. Phys. Chem. B 108, 3174 (2004).

    CAS  Google Scholar 

  33. J. A. Ciezak, T. A. Jenkins, and Z. X. Liu, Propellants Explosives Pyrotechnics 32, 472 (2007).

    CAS  Google Scholar 

  34. P. J. Miller, S. Block, and G. J. Piermarini, Effects of pressure on the thermal-decomposition kinetics, chemical-reactivity and phase-behavior of RDX, Combust. Flame 83, 174 (1991).

    CAS  Google Scholar 

  35. G. J. Piermarini, S. Block, and P. J. Miller, Effects of pressure on the thermal-decomposition kinetics and chemical-reactivity of nitromethane,J. Phys. Chem. 93, 457 (1989).

    CAS  Google Scholar 

  36. G. J. Piermarini, S. Block, and P. J. Miller, Effects of pressure and temperature on the thermal-decomposition rate and reaction-mechanism of beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem. 91, 3872 (1987).

    CAS  Google Scholar 

  37. L. Zheng, B. M. Rice, and D. L. Thompson, Molecular dynamics simulations of the melting mechanisms of perfect and imperfect crystals of dimethylnitramine, J. Phys. Chem. B 111, 2891 (2007).

    CAS  Google Scholar 

  38. L. Zheng and D. L. Thompson, Molecular dynamics simulations of melting of perfect crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine, J. Chem. Phys. 125, 084505 (2006).

    Google Scholar 

  39. A. Siavosh-Haghighi and D. L. Thompson, Molecular dynamics simulations of surfaceinitiated melting of nitromethane, J. Chem. Phys. 125, 184711 (2006).

    Google Scholar 

  40. P. M. Agrawal, B. M. Rice, L. Zheng, G. F. Velardez, and D. L. Thompson, Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field, J. Phys. Chem. B 110, 5721 (2006).

    CAS  Google Scholar 

  41. L. Zheng, S. N. Luo, and D. L. Thompson, Molecular dynamics simulations of melting and the glass transition of nitromethane, J. Chem. Phys. 124, 154504 (2006).

    Google Scholar 

  42. P. M. Agrawal, B. M. Rice, and D. L. Thompson, Molecular dynamics study of the melting of nitromethane, J. Chem. Phys. 119, 9617 (2003).

    CAS  Google Scholar 

  43. D. Cremer and J. A. Pople, General definition of ring puckering coordinates, J. Am. Chem. Soc. 97, 1354 (1975).

    CAS  Google Scholar 

  44. C. B. Barber, D. P. Dobkin, H. T. Huhdanpaa, Quickhull algorithm for convex hulls, ACM Trans. Math. Softw. 22, 469 (1996).

    Google Scholar 

  45. M. J. Cawkwell, T. D. Sewell, K. J. Ramos, and D. E. Hooks, Shock-induced anomalous plastic hardening in an energetic molecular crystal (Phys. Rev. B, submitted).

    Google Scholar 

  46. K. Kadau, T. C. Germann, and P. S. Lomdahl, Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L, Int. J. Mod. Phys. C 17, 1755 (2006).

    CAS  Google Scholar 

  47. K. Kadau, C. Rosenblatt, J. L. Barber, T. C. Germann, Z. B. Huang, P. Carles, and B. J. Alder, The importance of fluctuations in fluid mixing, Proc. Nat. Acad. Sci. USA 104, 7741 (2007).

    CAS  Google Scholar 

  48. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2002).

    Google Scholar 

  49. A. Gavezzotti, Are crystal-structures predictable?, Accounts Chem. Res. 27, 309 (1994).

    CAS  Google Scholar 

  50. P. Verwer and F. J. J. Leusen, Computer simulation to predict possible crystal polymorphs, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd (Eds.) (Wiley-VCH, New York, 1998), p. 327.

    Google Scholar 

  51. R. J. Gdanitz, Ab initio prediction of molecular crystal structures, Curr. Opn. Solid State Mater. Sci. 3, 414 (1998).

    CAS  Google Scholar 

  52. A. Gavezzotti, The chemistry of intermolecular bonding: Organic crystals, their structures and transformations. Synlett 2, 201 (2002).

    Google Scholar 

  53. T. Beyer, T. Lewis, and S. L. Price, Which organic crystal structures are predictable by lattice energy minimisation?, Cryst. Eng. Comm. 44, 1 (2001).

    Google Scholar 

  54. J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, W. T. M. Mooij, S. L. Price, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer, and D. E. Williams, A test of crystal structure prediction of small organic molecules, Acta Cryst. B 56, 697 (2002).

    Google Scholar 

  55. W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko, P. Erk, A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, J. P. M. Lommerse, W. T. M. Mooij, S. L. Price, H. Scheraga, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer, and D. E. Williams, Crystal structure prediction of small organic molecules: a second blind test, Acta Cryst. B 58, 647 (2002).

    Google Scholar 

  56. W. T. M. Mooij, B. P. van Eijck, S. L. Price, P. Verwer, and J. Kroon, Crystal structure predictions for acetic acid, J. Comput. Chem. 19, 459 (1998).

    CAS  Google Scholar 

  57. D. W. M. Hofmann and T. Lengauer, Crystal structure prediction based on statistical potentials, J. Mol. Model. 4, 132 (1998).

    CAS  Google Scholar 

  58. A. Gavezzotti, Generation of possible crystal-structures from the molecular-structure for lowpolarity organic-compounds, J. Am. Chem. Soc. 113, 4622 (1991).

    CAS  Google Scholar 

  59. H. R. Karfunkel, F. J. Leusen, and R. J. Gdanitz, The ab initio prediction of yet unknown molecular crystal structures by solving the crystal packing problem, J. Comput.-Aided Mater. Des. 1, 177 (1993).

    Google Scholar 

  60. D. J. Willock, S. L. Price, M. Leslie, and C. R. A. Catlow, The relaxation of molecularcrystal structures using a distributed multipole electrostatic model, J. Comput. Chem. 16, 628 (1995).

    CAS  Google Scholar 

  61. D. E. Williams, Ab initio molecular packing analysis, Acta Cryst. A 52 326 (1996).

    Google Scholar 

  62. A. V. Dzyabchenko, T. S. Pivina, and E. A. Arnautova, Prediction of structure and density for organic nitramines, J. Mol Struct. 378, 67 (1996).

    CAS  Google Scholar 

  63. M. U. Schmidt and U. Englert, Prediction of crystal structures, J. Chem. Soc. Dalton Trans. 10, 2077 (1996).

    Google Scholar 

  64. A. M. Chaka, R. Zaniewski, W. Youngs, C. Tessier, and G. Klopman, Predicting the crystal structure of organic molecular materials, Acta Cryst. B 52, 165 (1996).

    Google Scholar 

  65. D. W. M. Hofmann and T. Lengauer, A discrete algorithm for crystal structure prediction of organic molecules, Acta Cryst. A 53, 225 (1997).

    Google Scholar 

  66. G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M. Boerrigter, R. G. Della Valle, E. Venuti, A. Dzyabchenko, J. D. Dunitz, B. Schweizer, B. P. van Eijck, P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro, D. W. M. Hofmann, F. J. J. Leusen, C. Liang, C. C. Pantelides, P. G. Karamertzanis, S. L. Price, T. C. Lewis, H. Nowell, A. Torrisi, H. A. Scheraga, Y. A. Arnautova, M. U. Schmidt, and P. Verwer, A third blind test of crystal structure prediction, Acta Cryst. B 61, 511 (2005).

    CAS  Google Scholar 

  67. P. Erk, Crystal engineering: from molecules and crystals to materials, NATO Sci. Ser. C 538, 143 (1999).

    CAS  Google Scholar 

  68. B. P. van Eijck and J. Kroon, UPACK program package for crystal structure prediction: Force fields and crystal structure generation for small carbohydrate molecules, J. Comput. Chem. 20, 799 (1999).

    Google Scholar 

  69. A. V. Dzyabchenko, V. Agafonov, and V. A. Davydov, A theoretical study of the pressureinduced dimerization of C-60 fullerene, J. Phys. Chem. A 103, 2812 (1999).

    CAS  Google Scholar 

  70. W. T. M. Mooij, F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and B. P. van Eijck, Transferable ab initio intermolecular potentials. 1. Derivation from methanol dimer and trimer calculations, J. Phys. Chem. A 103, 9872 (1999).

    CAS  Google Scholar 

  71. W. D. S. Motherwell, Crystal structure prediction and the Cambridge Structural Database, Nova Acta Leopoldina 79, 89 (1999).

    CAS  Google Scholar 

  72. B. P. van Eijck and J. Kroon, Structure predictions allowing more than one molecule in the asymmetric unit, Acta Cryst. B 56, 535 (2000).

    Google Scholar 

  73. T. Beyer and S. L. Price, Dimer or catemer? Low-energy crystal packings for small carboxylic acids, J. Phys. Chem. B 104, 2647 (2000).

    CAS  Google Scholar 

  74. T. Beyer, G. M. Day, and S. L. Price, The prediction, morphology, and mechanical properties of the polymorphs of paracetamol, J. Am. Chem. Soc. 123, 5086 (2001).

    CAS  Google Scholar 

  75. J. Pillardy, Y. A. Arnautova, C. Czaplewski, K. D. Gibson, and H. A. Scheraga, Conformation-family Monte Carlo: A new method for crystal structure prediction, Proc. Nat. Acad. Sci. USA 98, 12351 (2001).

    CAS  Google Scholar 

  76. C. Mellot-Draznieks, S. Girard, G. Ferey, J. C. Schon, Z. Cancarevic, and M. Jansen, Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts, Chem. Eur. J. 8, 4103 (2002).

    Google Scholar 

  77. E. Pidcock and W. D. S. Motherwell, A new model of crystal packing, Chem. Commun. 24, 3028 (2003).

    Google Scholar 

  78. E. Pidcock and W. D. S. Motherwell, A novel description of the crystal packing of molecules, Cryst. Growth Des. 4, 611 (2004).

    CAS  Google Scholar 

  79. J. R. Holden, Z. Y. Du, and H. L. Ammon, Prediction of possible crystal-structures for C-containing, H-containing, N-containing, O-containing and F-containing organiccompounds, J. Comput. Chem. 14 422 (1993).

    CAS  Google Scholar 

  80. D. Q. Gao and D. E. Williams, Molecular packing groups and ab initio crystal-structure prediction, Acta Cryst. A 55, 621 (1999).

    Google Scholar 

  81. A. D. Mighell, V. L. Himes, and J. R. Rodgers, Space-group frequencies for organic-compounds, Acta Cryst. A 39 737 (1983).

    Google Scholar 

  82. For example: J. A. Moriarty, L. X. Benedict, J. N. Glosli, R. Q. Hood, D. A. Orlikowski, M. V. Patel, P. Soderlind, F. H. Streitz, M. J. Tang, and L. H. Yang, Robust quantum-based interatomic potentials for multiscale modeling in transition metals, J. Mat. Res. 21, 563 (2006).

    CAS  Google Scholar 

  83. For example: A. J. Pertsin and A. I. Kitaigorodskii, The Atom-Atom Potential Method: Applications to Organic Molecular Solids. Springer Series in Chemical Physics 43. (Springer, Heidelberg, 1987).

    Google Scholar 

  84. A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Time-reversible ab initio molecular dynamics, J. Chem. Phys. 126, 114103 (2007).

    Google Scholar 

  85. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Intermolecular potential for the hexahydro-1,3,5-trinitro-1,3,5-s-triazine crystal (RDX): A crystal packing, Monte Carlo, and molecular dynamics study, J. Phys. Chem. B 101, 798 (1997).

    CAS  Google Scholar 

  86. D. C. Sorescu and D. L. Thompson, Classical and quantum mechanical studies of crystalline ammonium nitrate, J. Phys. Chem. A 105, 720 (2001).

    CAS  Google Scholar 

  87. D. C. Sorescu, J. A. Boatz, and D. L. Thompson, Classical and quantum-mechanical studies of crystalline FOX-7 (1,1-diamino-2,2-dinitroethylene), J. Phys. Chem.A 105, 5010 (2001).

    CAS  Google Scholar 

  88. D. C. Sorescu and D. L. Thompson, Classical and quantum mechanical studies of crystalline ammonium dinitramide, J. Phys. Chem. B 103, 6774 (1999).

    CAS  Google Scholar 

  89. G. D. Smith and R. K. Bharadwaj, Quantum chemistry based force field for simulations of HMX, J. Phys. Chem. B 103, 3570 (1999).

    CAS  Google Scholar 

  90. J. Seminario, M. C. Concha, and P. Politzer, A density-functional molecular-dynamics study of the structure of liquid nitromethane, J. Chem. Phys. 102 8281 (1995).

    CAS  Google Scholar 

  91. S. W. Bunte and H. Sun, Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field, J. Phys. Chem. B 104, 2477 (2000).

    CAS  Google Scholar 

  92. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW, and PETN crystals, J. Phys. Chem. B 103, 6783 (1999).

    CAS  Google Scholar 

  93. J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives (Wiley, Chichester, 2007).

    Google Scholar 

  94. H. H. Cady and L. C. Smith, Studies on the polymorphs of HMX, LANL report LA-MS-2652 (Los Alamos National Laboratory, 1962).

    Google Scholar 

  95. H. H. Cady, A. C. Larson, and D. T. Cromer, The crystal structure of α-HMX and a refinement of the structure of β-HMX, Acta Crystallogr. 16, 617 (1963).

    CAS  Google Scholar 

  96. C. S. Choi and H. P. Boutin, A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction, Acta Cryst. B 26, 1235 (1970).

    CAS  Google Scholar 

  97. R. E. Cobbledick and R. W. H. Small, The crystal structure of the δ-form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (8-HMX), Acta Cryst. B 30, 1918 (1974).

    Google Scholar 

  98. D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White, Detonations at nanometer resolution using molecular dynamics, Phys. Rev. Lett. 70, 2174 (1993); ibid., Detonations at nanometer resolution using molecular dynamics,Phys. Rev. Lett. 76, 2202 (1996).

    CAS  Google Scholar 

  99. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61, 2879 (2003).

    Google Scholar 

  100. R. L. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004).

    Google Scholar 

  101. R. G. Parr and W Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

    Google Scholar 

  102. H. Liu, J. J. Zhao, D. Q. Wei, and Z. Z. Gong, Structural and vibrational properties of solid nitromethane under high pressure by density functional theory, J. Chem. Phys. 124, 12450 (2006).

    Google Scholar 

  103. E. F. C. Byrd, G. E. Scuseria, and C. F. Chabalowski, An ab initio study of solid nitromethane, HMX, RDX, and CL20: Successes and failures of DFT, J. Phys. Chem. B 108,13100 (2004).

    CAS  Google Scholar 

  104. E. F. C. Byrd and B. M. Rice, Ab initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitro-hexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaery-thritol tetranitrate (PETN), J. Phys. Chem. C 111, 2787 (2007).

    CAS  Google Scholar 

  105. V. I. Levitas, L. B. Smilowitz, B. F. Henson, and B. W Asay, Interfacial and volumetric kinetics of the beta - › delta phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based on the virtual melting mechanism, J. Chem. Phys. 124, 025101 (2006).

    Google Scholar 

  106. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W A. Goddard III, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105, 9396 (2001).

    Google Scholar 

  107. A. Strachan, A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and W A. Goddard III, Shock waves in high-energy materials: The initial chemical events in nitramine RDX, Phys. Rev. Lett. 91, 098301 (2003).

    Google Scholar 

  108. A. Strachan, E. M. Kober, A. C. T. van Duin, J. Oxgaard, and W A. Goddard III, Thermal decomposition of RDX from reactive molecular dynamics, J. Chem. Phys. 122, 054502 (2005).

    Google Scholar 

  109. A. C. T. van Duin, Y. Zeiri, F. Dubnikova, R. Kosloff, and W. A. Goddard III, Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide, J. Am. Chem. Soc. 127, 11053 (2005).

    Google Scholar 

  110. W. J. Mortier, S. K. Ghosh, and S. Shankar, Electronegativity equalization method for the calculation of atomic charges in molecules, J. Am. Chem. Soc. 108, 4315 (1986).

    CAS  Google Scholar 

  111. M. J. Buehler, A. C. T. van Duin, and W. A. Goddard III, Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field, Phys. Rev. Lett. 96, 095505 (2006).

    Google Scholar 

  112. K. Chenoweth, S. Cheung, A. C. T. van Duin, W. A. Goddard III, and E. M. Kober, Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field, J. Am. Chem. Soc. 127, 7192 (2005).

    CAS  Google Scholar 

  113. Q. Zhang, Y. Qi, L. G. Hector, T. Cagin, and W. A. Goddard III, Atomic simulations of kinetic friction and its velocity dependence at Al/Al and alpha-Al2O3/alpha-Al2O3 interfaces, Phys. Rev. B 72, 045406 (2005).

    Google Scholar 

  114. K. D. Nielson, A. C. T. van Duin, J. Oxgaard, W. Q. Deng, and W. A. Goddard III, Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes, J. Phys. Chem. A 109, 493 (2005).

    CAS  Google Scholar 

  115. J. Ludwig, D. G. Vlachos, A. C. T. van Duin, and W. A. Goddard III, Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field, J. Phys. Chem. B 110, 4274 (2006).

    CAS  Google Scholar 

  116. W. A. Goddard III, A. C. T. van Duin, K. Chenoweth, M. J. Cheng, S. Pudar, J. Oxgaard, B. Merinov, Y. H. Jang, and P. Persson, Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx, Topics Catalysis 38, 93 (2006).

    CAS  Google Scholar 

  117. S. S. Han, J. K. Kang, H. M. Lee, A. C. T. van Duin, and W. A. Goddard III, The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development, J. Chem. Phys. 123, 114703 (2005).

    Google Scholar 

  118. S. S. Han, A. C. T. van Duin, W. A. Goddard III, and H. M. Lee, Optimization and application of lithium parameters for the reactive force field, ReaxFF, J. Phys. Chem. A 109, 4575 (2005).

    CAS  Google Scholar 

  119. S. Cheung, W. Q. Deng, A. C. T. van Duin, and W. A. Goddard III, ReaxFF(MgH) reactive force field for magnesium hydride systems, J. Phys. Chem. A 109, 851 (2005).

    CAS  Google Scholar 

  120. W. A. Goddard III, O. Zhang, M. Uludogan, A. Strachan, and T. Cagin, The ReaxFF polarizable reactive force fields for molecular dynamics simulation of ferroelectrics, AIP Conf. Proc. 626, 45 (2002).

    CAS  Google Scholar 

  121. I. I. Oleynik, M. Conroy, S. V. Zybin, L. Zhang, A. C. T. van Duin, W. A. Goddard III, and C. T. White, Energetic materials at high compression: first-principles density functional theory and reactive force field studies, AIP Conf. Proc. 845, 573 (2006).

    CAS  Google Scholar 

  122. SeqQuest Electronic Structure Code, http://dft.sandia.gov/Quest/

    Google Scholar 

  123. D. C. Langreth and J. P. Perdew, Theory of nonuniform electronic systems. 1. Analysis of the gradient approximation and a generalization that works, Phys. Rev. B 21, 5469 (1980).

    Google Scholar 

  124. J. P. Perdew and W. Yue W, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33, 8800 (1986); ibid., Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 40, 3399 (1989).

    Google Scholar 

  125. J. P. Perdew, Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas, Phys. Rev. B 33, 8822 (1986); ibid., Correction, Phys. Rev. B 34, 7406 (1986).

    Google Scholar 

  126. D. C. Langreth and M. J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic-properties, Phys. Rev. B 28, 1809 (1983); ibid., Erratum: Beyond the local-density approximation in calculations of ground-state electronic properties, Phys. Rev. B 29, 2310 (1984).

    CAS  Google Scholar 

  127. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996); ibid., Generalized gradient approximation made simple, Phys. Rev. Lett. 78, 1396 (1997).

    CAS  Google Scholar 

  128. A. C. T. van Duin, S. V. Zybin, K. Chenoweth, L. Zhang, S. P. Han, A. Strachan, and W. A. Goddard III, Reactive force fields based on quantum mechanics for applications to materials at extreme conditions, AIP Conf. Proc. 845, 581 (2006).

    Google Scholar 

  129. A. C. T. van Duin, S. V. Zybin, K. Chenoweth, S. P. Han, and W. A. Goddard III, Reactive force fields based on quantum mechanics for applications to materials at extreme conditions. Lecture Series on Computer and Computational Sciences 4 (Brill Academic Publishers, Amsterdam, 2005) p. 1109.

    Google Scholar 

  130. L. Zhang, S. V. Zybin, A. C. T. van Duin, S. Dasgupta, and W. A. Goddard III, Thermal decomposition of energetic materials by ReaxFF reactive molecular dynamics, AIP Conf. Proc. 845, 589 (2006).

    CAS  Google Scholar 

  131. O. Borodin, G. D. Smith, D. Bedrov, and T. D. Sewell, Polarizable and non-polarizable force fields for alkylnitrates, J. Phys. Chem. B 112, 734 (2008).

    CAS  Google Scholar 

  132. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Molecular packing and NPT molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2,3,6,8,10,12-hexanitrohexaazaisowurtzitane, J. Phys. Chem. B 102, 948 (1998).

    CAS  Google Scholar 

  133. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Isothermal-isobaric molecular dynamics simulations of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystals, J. Phys. Chem. B 102, 6692 (1998).

    CAS  Google Scholar 

  134. D. C. Sorescu, B. M. Rice, and D. L. Thompson, A transferable intermolecular potential for nitramine crystals, J. Phys. Chem. A 102, 8386 (1998).

    CAS  Google Scholar 

  135. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Molecular packing and molecular dynamics study of the transferability of a generalized nitramine intermolecular potential to non-nitramine crystals, J. Phys. Chem. A 103, 989 (1999).

    CAS  Google Scholar 

  136. B. M. Rice and D. C. Sorescu, Assessing a generalized CHNO intermolecular potential through ab initio crystal structure prediction, J. Phys. Chem. B 108, 17730 (2004).

    CAS  Google Scholar 

  137. L. Q. Zheng and D. L. Thompson, On the accuracy of force fields for predicting the physical properties of dimethylnitramine, J. Phys. Chem. B 110, 16082 (2006).

    CAS  Google Scholar 

  138. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Theoretical studies of solid nitromethane, J. Phys. Chem. B 104, 8406 (2000).

    CAS  Google Scholar 

  139. D. C. Sorescu, B. M. Rice, and D. L. Thompson, Molecular dynamics simulations of liquid nitromethane, J. Phys. Chem. A 105, 9336 (2001).

    CAS  Google Scholar 

  140. A. Siavosh-Haghighi and D. L. Thompson, Melting point determination from solid-liquid coexistence initiated by surface melting, J. Phys. Chem. C 111, 7980 (2007).

    CAS  Google Scholar 

  141. T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, and L. Almásy, Structure of liquid nitromethane: Comparison of simulation and diffraction studies, J. Chem. Phys. 126, 164507 (2007).

    Google Scholar 

  142. P. M. Agrawal, B. M. Rice, L. Zheng, and D. L. Thompson, Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field, J. Phys. Chem. B 110, 26185 (2006).

    CAS  Google Scholar 

  143. N. Goto, H. Yamawaki, K. Wakabayashi, Y. Nakayama, M. Yoshida, and M. Koshi, High pressure phase of RDX, Sci. Tech. Energ. Mater. 66, 291 (2005).

    CAS  Google Scholar 

  144. D. A. Case, D. A. Pearlman, J. W. Caldwell, T. E. Cheatham, J. Wang, W. S. Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crowley, V. Tsui, H. Gohlke, R. J. Radmer, Y. Duan, J. Pitera, I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner, and P. A. Kollman, AMBER 7 (University of California, San Francisco, 2002).

    Google Scholar 

  145. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25, 1157 (2004).

    CAS  Google Scholar 

  146. S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, An all atom force-field for simulations of proteins and nucleic-acids, J. Comput. Chem. 7, 230 (1986).

    CAS  Google Scholar 

  147. S. Ye, K. Tonokura, and M. Koshi, Theoretical studies of pressure dependence of phonon and vibron frequency shifts of PETN, Sci. Tech. Energ. Mater. 64, 201 (2003).

    CAS  Google Scholar 

  148. H. E. Alper, F. Abu-Awwad, and P. Politzer, Molecular dynamics simulations of liquid nitromethane, J. Phys. Chem. B 103, 9738 (1999).

    Google Scholar 

  149. S. Boyd, M. Gravelle, and P. Politzer, Nonreactive molecular dynamics force field for crystalline hexahydro-1,3,5-trinitro-1,3,5 triazine, J. Chem. Phys. 124, 104508 (2006).

    Google Scholar 

  150. G. D. Smith, R. K. Bharadwaj, D. Bedrov, and C. Ayyagari, Quantum-chemistry-based force field for simulations of dimethylnitramine, J. Phys. Chem. B 103, 705 (1999).

    CAS  Google Scholar 

  151. H. Davande, O. Borodin, G. D. Smith, and T. D. Sewell, Quantum chemistry-based force field for simulations of energetic dinitro compounds, J. Energ. Mater. 23, 205 (2005).

    CAS  Google Scholar 

  152. R. I. Hiyoshi, Y. Kohno, O. Takahashi, J. Nakamura, Y. Yamaguchi, S. Matsumoto, N. Azuma, and K. Ueda, Effect of pressure on the vibrational structure of insensitive energetic material 5-nitro-2,4-dihydro-1,2,4-triazole-3-one, J. Phys. Chem. A 110, 9816 (2006).

    Google Scholar 

  153. H. Liu, J. J. Zhao, G. F. Ji, Z. Z. Gong, and D. Q. Wei, Compressibility of liquid nitromethane in the high-pressure regime, Physica B: Condens. Mat. 382, 334 (2006).

    CAS  Google Scholar 

  154. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. S. Swaminathan, and M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 4, 187187 (1983).

    Google Scholar 

  155. D. Bedrov, O. Borodin, B. Hanson, and G. D. Smith, Comment on “ On the accuracy of force fields for predicting the physical properties of dimethylnitramine”, J. Phys. Chem. B 111, 1900 (2007).

    CAS  Google Scholar 

  156. D. Bedrov, C. Ayyagari, G. D. Smith, T. D. Sewell, R. Menikoff, and J. M. Zaug, Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field, J. Comput. Aid. Mat. Des. 8, 77 (2001).

    CAS  Google Scholar 

  157. T. D. Sewell, R. Menikoff, D. Bedrov, and G. D. Smith, A molecular dynamics simulation study of elastic properties of HMX, J. Chem. Phys. 119, 7417 (2003).

    CAS  Google Scholar 

  158. D. Bedrov, G. D. Smith, and T. D. Sewell, Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations, Chem. Phys. Lett. 324, 64 (2000).

    CAS  Google Scholar 

  159. D. Bedrov, G. D. Smith, and T. D. Sewell, Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): A molecular dynamics simulation study, J. Chem. Phys. 112, 7203 (2000).

    CAS  Google Scholar 

  160. J. K. Dienes, Q. H. Zuo, and J. D. Kershner, Impact initiation of explosives and propellants via statistical crack mechanics, J. Mech. Phys. Solids 54, 1237 (2006).

    CAS  Google Scholar 

  161. B. E. Clements, E. M. Mas, J. N. Plohr, A. Ionita, and F. L. Addessio, Dynamic Response of PBX-9501 through the β—δ Phase Transition, AIP Conf. Proc. 845, 204 (2006).

    CAS  Google Scholar 

  162. G. D. Smith, D. Bedrov, O. Byutner, O. Borodin, C. Ayyagari, and T. D. Sewell, A quantum-chemistry-based potential for a poly(ester urethane), J. Phys. Chem. A 107, 7552 (2003).

    Google Scholar 

  163. R. H. Gee, S. Roszak, K. Balasubramanian, and L. E. Fried, Ab initio based force field and molecular dynamics simulations of crystalline TATB, J. Chem. Phys. 120, 7059 (2004).

    CAS  Google Scholar 

  164. R. Podeszwa, R. Bukowski, B. M. Rice, and K. Szalewicz, Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory, Phys. Chem. Chem. Phys. 9, 5561 (2007).

    CAS  Google Scholar 

  165. C. Møller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Phys Rev. 46, 618 (1934).

    Google Scholar 

  166. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  167. T. D. Sewell and D. Bedrov, Elastic properties of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), (to be submitted to J. Chem. Phys., September 2008).

    Google Scholar 

  168. M. Pospíšil, P. Capková, P. Vavrá, and S. Zeman, Classical molecular dynamics simulations of RDX decomposition under high pressure, New Trends in Research of Energetic Materials, Proceedings of the 6th Seminar (Pardubice, Czech Republic, 2003).

    Google Scholar 

  169. L. Qiu, H. M. Xiao, W. H. Zhu, J. J. Xiao, and W. Zhu, Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin), J. Phys. Chem. B 110, 10651 (2006).

    CAS  Google Scholar 

  170. X. J. Xu, H. M. Xiao, J. J. Xiao, W. Zhu, H. Huang, and J. S. Li, Molecular dynamics simulations for pure epsilon-CL-20 and epsilon-CL-20-based PBXs, J. Phys. Chem. B 110, 7203 (2006).

    CAS  Google Scholar 

  171. X. F. Ma, J. J. Xiao, H. Huang, X. H. Ju, J. S. Li, and H. M. Xiao, Simulative calculation of mechanical property, binding energy and detonation property of TATB/fluorine-polymer PBX, Chinese J. Chem. 24, 473 (2006).

    CAS  Google Scholar 

  172. K. Yin, H. Xiao, J. Zhong, and D. Xu, A new method for Calculation of Elastic Properties of Anisotropic material by constant pressure molecular dynamics. Lecture Series on Computer and Computational Sciences 1. (Brill Academic Publishers, Amsterdam, 2004) p. 586.

    Google Scholar 

  173. L. Qiu, W. H. Zhu, J. J. Xiao, W. Zhu, H. M. Xiao, H. Huang, and J. S. Li, Molecular dynamics simulations of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin-based polymer-bonded explosives, J. Phys. Chem. B 111, 1559 (2007).

    CAS  Google Scholar 

  174. A. T. Hagler, E. Huler, and S. Lifson, Energy functions for peptides and proteins.1. Derivation of a consistent force-field including hydrogen-bond from amide crystals, J. Am. Chem. Soc. 96, 5319 (1974).

    CAS  Google Scholar 

  175. H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications -Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102, 7338 (1998).

    CAS  Google Scholar 

  176. R. H. Gee, A. Maiti, S. Bastea, and L. E. Fried, Molecular dynamics investigation of adhesion between TATB surfaces and amorphous fluoropolymers, .Macromolecules 40, 3422 (2007).

    CAS  Google Scholar 

  177. P. B. Balbuena and J. M. Seminario (Eds.), Molecular Dynamics (Theoretical and Computational Chemistry) (Elsevier Science, Amsterdam, 1999).

    Google Scholar 

  178. D. Marx and J. Hutter, Ab initio molecular dynamics: Theory and Implementation, J. Grotendorst J (Editor) Modern Methods and Algorithms of Quantum Chemistry (John von Neumann Institute for Computing, Jülich, 2000) NIC Series 1, 301.

    Google Scholar 

  179. M. E. Tuckerman and M. L. Klein ML, Ab initio molecular dynamics study of solid nitromethane, Chem. Phys. Lett. 283, 147 (1998).

    CAS  Google Scholar 

  180. T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, and L. Almásy, Structure of liquid nitromethane: Comparison of simulation and diffraction studies, J. Chem. Phys. 126, 164507 (2007).

    Google Scholar 

  181. E. J. Reed, J. D. Joannopoulos, and L. E. Fried, Electronic excitations in shocked nitromethane, Phys. Rev. B 62, 16500 (2000).

    CAS  Google Scholar 

  182. M. R. Manaa, L. E. Fried, C. F. Melius, M. Elstner, and T. Frauenheim, Decomposition of HMX at extreme conditions: A molecular dynamics simulation, J. Phys. Chem. A 106, 9024 (2002).

    CAS  Google Scholar 

  183. M. R. Manaa, E. J. Reed, L. E. Fried, G. Galli, and F. Gygi, Early chemistry in hot and dense nitromethane: Molecular dynamics simulations, J. Chem. Phys. 120, 10146 (2004).

    Google Scholar 

  184. S. A. Decker, T. K. Woo, D. Wei, and F. Zhang, Ab initio molecular dynamics simulations of multimolecular collisions of nitromethane and compressed liquid nitromethane, Proc. 12th Symp. (Intl.) on Detonation (San Diego, California, 2002) p. 724.

    Google Scholar 

  185. R. Car and M. Parrinello, Unified approach for molecular-dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471 (1985).

    CAS  Google Scholar 

  186. M. Kamiya, T. Tsuneda, and K. Hirao, A density functional study of van der Waals interactions, J. Chem. Phys. 117, 6010 (2002).

    CAS  Google Scholar 

  187. R. Baer and D. Neuhauser, Density functional theory with correct long-range asymptotic behavior, Phys. Rev. Lett. 94, 043002 (2005).

    Google Scholar 

  188. T. Sato, T. Tsuneda, and K. Hirao, van der Waals interactions studied by density functional theory, Mol. Phys. 103, 1151 (2005).

    CAS  Google Scholar 

  189. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, A long-range correction scheme for generalized-gradient-approximation exchange functionals, J. Chem. Phys. 115, 3540 (2001).

    CAS  Google Scholar 

  190. R. W. Williams and D. Malhotra, van der Waals corrections to density functional theory calculations: Methane, ethane, ethylene, benzene, formaldehyde, ammonia, water, PBE, and CPMD, Chem. Phys. 327, 54 (2006).

    CAS  Google Scholar 

  191. F. Ortmann, F. Bechstedt, and W. G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures, Phys. Rev. B 73, 205101 (2006).

    Google Scholar 

  192. J. G. Angyan, I. C. Gerber, A. Savin, and J. Toulouse, van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections, Phys. Rev. A 72, 012510 (2005).

    Google Scholar 

  193. M. A. Neumann and M. A. Perrin, Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction, J. Phys. Chem. B 109, 15531 (2005).

    CAS  Google Scholar 

  194. J. Kleis and E. Schroder, van der Waals interaction of simple, parallel polymers, J. Chem. Phys. 122, 164902 (2005).

    Google Scholar 

  195. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comp. Chem. 25, 1463 (2004).

    CAS  Google Scholar 

  196. Q. Wu and W. T. Yang, Empirical correction to density functional theory for van der Waals interactions, J. Chem. Phys. 116, 515 (2002).

    CAS  Google Scholar 

  197. T. Sato, T. Tsuneda, and K. Hirao, A density-functional study on pi-aromatic interaction: Benzene dimer and naphthalene dimer, J. Chem. Phys. 123, 104307 (2005).

    Google Scholar 

  198. H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S. I. Simak, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for layered structures, Phys. Rev. Lett. 91, 126402 (2003).

    CAS  Google Scholar 

  199. H. Rydberg, B. I. Lundqvist, D. C. Langreth, and M. Dion, Tractable nonlocal correlation density functionals for flat surfaces and slabs, Phys. Rev. B 62, 6997 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rice, B.M., Sewell, T.D. (2009). Equilibrium Molecular Dynamics Simulations. In: Peiris, S.M., Piermarini, G.J. (eds) Static Compression of Energetic Materials. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68151-9_7

Download citation

Publish with us

Policies and ethics