Skip to main content

Understanding Shock-Induced Changes in Molecular Crystals

  • Chapter
Static Compression of Energetic Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 1800 Accesses

Understanding the response of molecular crystals to shock-wave compression is of considerable interest to shock-wave research. This is, in part, because most energetic materials (EM) are made of molecular crystals (MC). Because of their high compressibility, low threshold for inelastic deformation, and low symmetry, molecular crystals tend to undergo a variety of physical and chemical changes under shock compression. The changes largely depend on the stress history, and involve deformation, increased temperature, and are of short duration. The microscopic processes occurring in molecular solids under these conditions are rather complex. They can involve the molecular and crystal transformations, and formation or dissociation of chemical bonds, all in a very short time. In energetic materials, an extensive decomposition can occur. To reveal and unravel these effects from a single event of the shock experiment is scientifically very challenging. Because of the complexity of the problem and experimental and theoretical limitations, our understanding of molecular-level processes in shocked molecular crystals/energetic crystals is limited. The governing microscopic mechanisms, both in the unreacted and reacted molecular crystals, remain largely unidentified.

Over the last 20 years, various approaches have been undertaken to increase the level of understanding of physical and chemical processes occurring in shocked energetic materials. They include experimental as well as theoretical and computational efforts. Good recent reviews of these efforts can be found in [1–3], and other chapters in this book. Synergy between these fields has been a challenging requirement, because the time and length scales of current experiments are many orders of magnitude larger than those in atomistic models. Despite this, the advances are being made in developing experimental approaches that provide more detailed information on molecular processes in compressed energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Politzer and J.S. Murray, eds., Energetic Materials: Part 1. Decomposition, Crystal and Molecular Properties, Elsevier: Amsterdam (2003).

    Google Scholar 

  2. P. Politzer and J.S. Murray, eds., Energetic Materials: Part 2. Detonation, Combustion, Elsevier: Amsterdam (2003).

    Google Scholar 

  3. M.R. Manaa, ed., Chemistry at Extreme Conditions, Elsevier: Amsterdam (2005).

    Google Scholar 

  4. J.A. Zukas and W.P. Walters, eds., Explosive Effects and Applications, Springer: New York (2002).

    Google Scholar 

  5. Y.M. Gupta, Recent developments to understand molecular changes in shocked energetic materials, J. De Phys. IV Colloque C4, 345–356 (1995).

    Google Scholar 

  6. J.B. Bdzil and D.S. Stewart, The dynamics of detonation in explosive systems, Ann. Rev. Fluid Mech. 39, 263–292 (2007).

    Article  Google Scholar 

  7. D.D. Dlott, Multi-phonon up-pumping in energetic materials, in: Overviews of recent research on energetic materials, D.L. Thomson, T.B. Brill, and R.W. Shaw, eds., Adv. Ser. Phys. Chem. 16, 303–333 (2005).

    Article  CAS  Google Scholar 

  8. D.D. Dlott, Fast molecular processes in energetic materials, in: Energetic Materials, Part 2: Detonation, Combustion, P.A. Politzer and J.S. Murray, eds., Elsevier: Amsterdam (2003), pp. 125–191.

    Chapter  Google Scholar 

  9. M.R. Manaa, Initiation and decomposition mechanisms of energetic materials, in: Energetic Materials, Part 2: Detonation, Combustion, P.A. Politzer and J.S. Murray, eds., Elsevier: Amsterdam (2003), pp. 71–100.

    Chapter  Google Scholar 

  10. L.E. Fried, M.R. Manaa, P.F. Pagoria, and R.L. Simpson, Design and synthesis of energetic materials, Ann. Rev. Mater. Res. 31, 291–321 (2001).

    Article  CAS  Google Scholar 

  11. M.R. Manaa, L.E. Fried, and E.J. Reed, Explosive chemistry: simulating the chemistry of energetic materials at extreme conditions, J. Comp.-Aided Mat. Design 10, 75–97 (2003).

    Article  CAS  Google Scholar 

  12. T. Luty, Explosive molecular crystals: on the mechanism of detonation, Mol. Phys. Rep. 14, 157–167 (1996).

    CAS  Google Scholar 

  13. D.D. Dlott and M.D. Fayer, Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry, J. Chem. Phys. 92, 3798–3812 (1990).

    Article  CAS  Google Scholar 

  14. A. Tokmakoff, M.D. Fayer, and D.D. Dlott, Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials, J. Phys. Chem. 97, 1901–1913 (1993).

    Article  CAS  Google Scholar 

  15. J.J. Gilman, Shear-induced metallization, Phil. Mag. B 67, 207–214 (1993).

    CAS  Google Scholar 

  16. J.J. Gilman, Chemical reactions at detonation fronts in solids, Phil. Mag. B 71, 1057–1068 (1995).

    Article  CAS  Google Scholar 

  17. M.M. Kuklja and A.B. Kunz, Simulation of defects in energetic materials. 3. The structure and properties of RDX crystals with vacancy complexes, J. Phys. Chem. B 103, 8427–8431 (1999).

    Article  CAS  Google Scholar 

  18. M.M. Kuklja, E.V. Stefanovich, and A.B. Kunz, An excitonic mechanism of detonation initiation in explosives, J. Chem. Phys. 112, 3417–3423 (2000).

    Article  CAS  Google Scholar 

  19. E.J. Reed, J.D. Joannopoulos, and L.E. Fried, Phys. Rev. B 62, 19500–19509 (2000).

    Article  Google Scholar 

  20. T. Luty, P. Ordon, and C.J. Eckhardt, A model for mechanochemical transformations: applications to molecular hardness, instabilities, and shock initiation of reaction, J. Chem. Phys. 117, 1775–1785 (2002).

    Article  CAS  Google Scholar 

  21. D. Tsiaousis and R.W. Munn, Energy of charged states in the RDX crystal: trapping of charge-transfer pairs as a possible mechanism for initiating detonation, J. Chem. Phys. 122, 184708-1–184708-9 (2005).

    Article  CAS  Google Scholar 

  22. G.I. Pangilinan and Y.M. Gupta, Molecular processes in a shocked explosive: time resolved spectroscopy of liquid nitromethane, in: High Pressure Shock Compression of Solids III, M. Shahinpoor and L.W. Davison, eds., Springer: New York (1998), pp. 81–100.

    Google Scholar 

  23. W.J. Nellis, Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Rep. Prog. Phys. 69, 1479–1580 (2006).

    Article  CAS  Google Scholar 

  24. L.M. Barker, M. Shahinpoor, and L.C. Chhabildas, Experimental and diagnostic techniques, in: High Pressure Shock Compression of Solids, J.R. Asay and M. Shahinpoor, eds., Springer: New York (1993), pp. 43–74.

    Google Scholar 

  25. L.C. Chhabildas, L. Davison, and Y. Horie, eds., High Pressure Shock Compression of Solids VIII, Springer: New York (2005).

    Google Scholar 

  26. J.R. Asay and M. Shahinpoor, High Pressure Shock Compression of Solids, Springer: New York (1993).

    Google Scholar 

  27. Y.M. Gupta, COPS Code, Stanford Research Institute: Menlo Park, CA, unpublished (1976).

    Google Scholar 

  28. D.S. Moore, S.C. Schmidt, J.W. Shaner, D.L. Shampine, and W.T. Holt, Coherent anti-Stokes Raman scattering in benzene and nitromethane shock-compressed to 11 GPa, in: Shock Waves in Condensed Matter-1985, Y.M. Gupta, ed., Plenum: New York (1986), pp. 207– 211.

    Google Scholar 

  29. C.S. Yoo, Y.M. Gupta, and P.D. Horn, Pressure-induced resonance Raman effect in shocked carbon disulfide, Chem. Phys. Lett. 159, 178–183 (1989).

    Article  CAS  Google Scholar 

  30. N.C. Holmes, Dual-beam, double-pass absorption spectroscopy of shocked materials, Rev. Sci. Instrum. 64, 357–362 (1993).

    Article  CAS  Google Scholar 

  31. D.S. Moore and S.C. Schmidt, Vibrational spectroscopy of materials under extreme pressure and temperature, J. Mol. Struct. 347, 101–112 (1995).

    Article  CAS  Google Scholar 

  32. R.L. Gustavsen and Y.M. Gupta, Time resolved Raman measurements in α-quartz shocked to 60 kbar, J. Appl. Phys. 75, 2837–2844 (1994).

    Article  CAS  Google Scholar 

  33. G.I. Pangilinan and Y.M. Gupta, Time-resolved Raman measurements in nitromethane shocked to 140 kbar, J. Phys. Chem. 98, 4522–4529 (1994).

    Article  CAS  Google Scholar 

  34. J.M. Winey and Y.M. Gupta, UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane, J. Phys. Chem. 49, 9333–9340 (1997).

    Google Scholar 

  35. Y.A. Gruzdkov and Y.M. Gupta, Emission and fluorescence spectroscopy to examine shock-induced decomposition in nitromethane, J. Phys. Chem. A 102, 8325–8332 (1998).

    Article  CAS  Google Scholar 

  36. Y.M. Gruzdkov and Y.M. Gupta, Mechanism of amine sensitization in shocked nitromethane, J. Phys. Chem. A 102, 2322–2331 (1998).

    Article  CAS  Google Scholar 

  37. Z.A. Dreger, Y.A. Gruzdkov, Y.M. Gupta, and J.J. Dick, Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: time-resolved emission spectroscopy, J. Phys. Chem. B 106, 247–256 (2002).

    Article  CAS  Google Scholar 

  38. X. Hong, S. Cheu, and D.D. Dlott, Ultrafast made-specific intermolecular vibrational energy transfer to liquid nitromethane, J. Phys. Chem. 99, 9102–9109 (1995).

    Article  CAS  Google Scholar 

  39. X. Hong and D.D. Dlott, Two-dimensional vibrational spectroscopy and its application to high explosives, in: Time-Resolved Vibrational Spectroscopy VII, W. Woodruff, Ed. (Springer Proceedings in Physics), Santa Fe, pp. 269–270 (1995).

    Google Scholar 

  40. D.E. Hare, I.Y.S. Lee, J.R. Hill, J. Franken, H. Suzuki, B.J. Baer, and E.L. Chronister, Ultra-fast dynamics of shock waves and shocked energetic materials, Proc. Mat. Res. Symp. 418, 357–362 (1996).

    Google Scholar 

  41. D.D. Dlott, Nanoshocks in molecular materials, Acc. Chem. Res. 33, 37–45 (2000).

    Article  CAS  Google Scholar 

  42. S.D. McGrane, D.S. Moore, and D.J. Funk, Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films, J. Phys. Chem. A 108, 9342–9347 (2004).

    Article  CAS  Google Scholar 

  43. M.D. Knudson and Y.M. Gupta, Real-time observation of a metastable state during the phase transition in shocked cadmium sulfide, Phys. Rev. Lett. 81, 2938–2941 (1998).

    Article  CAS  Google Scholar 

  44. M.D. Knudson, K.A. Zimmerman, and Y.M. Gupta, Picosecond time-resolved electronic spectroscopy in plate impact shock experiments: experimental development, Rev. Sci. In-strum. 70, 1743–1750 (1999).

    Article  CAS  Google Scholar 

  45. N.C. Holmes and R. Chau, Fast time-resolved spectroscopy in shock compressed matter, J. Chem. Phys. 119, 3316–3319 (2003).

    Article  CAS  Google Scholar 

  46. J. Franken, S. Hambir, D.E. Hare, and D.D. Dlott, Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond, Shock Waves 7, 135–145 (1997).

    Article  Google Scholar 

  47. J. Franken, S.A. Hambir, and D.D. Dlott, Picosecond vibrational spectroscopy of shocked energetic materials, in: Shock Compression of Condensed Matter-1997, S.C. Schmidt, D.P. Dandekar, and J.W. Forbes, eds., AIP: New York (1998), pp. 819–822.

    Google Scholar 

  48. D.D. Dlott, H. Yu, S. Wang, Y. Yang, and S.A. Hambir, Nanotechnology energetic materials dynamics studied with nanometer spatial resolution and picosecond temporal resolution, in: Advances in Computational & Experimental Engineering Science-'04, S.N. Atlurl and A Tadeu, eds., pp. 1427–1432 (2004).

    Google Scholar 

  49. N. Hemmi, Z.A. Dreger, Y.A. Gruzdkov, J.M. Winey, and Y.M. Gupta, Raman spectra of compressed pentaerythritol tetranitrate single crystals: anisotropic response, J. Phys. Chem. B 110, 20948–20953 (2006).

    Article  CAS  Google Scholar 

  50. N. Hemmi, Y.A. Gruzdkov, K.A. Zimmerman, Z.A. Dreger, and Y.M. Gupta, in preparation.

    Google Scholar 

  51. Y. Ma, H.K. Mao, and R.J. Hemley, Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa, Phys. Rev. B 60, 15063–15073 (1999-II).

    Article  Google Scholar 

  52. J.W. Otto, J.K. Vassiliou, and G Frommeyer, Nonhydrostatic compression of elastically anisotropic polycrystals. I. Hydrostatic limits of 4:1 methanol-ethanol and paraffin oil, Phys. Rev. B. 57, 3253–3263 (1998-II).

    Article  CAS  Google Scholar 

  53. J.W. Otto, J.K. Vassiliou, and G. Frommeyer, Nonhydrostatic compression of elastically anisotropic polycrystals. II. Direct compression and plastic deformation, Phys. Rev. B 57, 3264–3272 (1998-II).

    Article  CAS  Google Scholar 

  54. A.K. Singh, The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device, J. Appl. Phys. 73, 4278–4286 (1993).

    Article  Google Scholar 

  55. A.K. Singh, C. Balasingh, H. Mao, R.J. Hemley, and J. Shu, Analysis of lattice strains measured under nonhydrostatic pressure, J. Appl. Phys. 83, 7567–7575 (1998).

    Article  CAS  Google Scholar 

  56. L. Dubrovinsky and N. Dubrovinskaia, Angle-dispersive diffraction under non-hydrostatic stress in diamond anvil cells, J. Alloys Comp. 375, 86–92 (2004).

    Article  CAS  Google Scholar 

  57. N. Funamori, T. Yagi, and T. Uchida, Deviatoric stress measurement under uniaxial compression by a powder x-ray diffraction method, J. Appl. Phys. 75, 4327–4331 (1994).

    Article  CAS  Google Scholar 

  58. T. Kenichi, Evaluation of the hydrostaticity of a helium-pressure medium with powder x-ray diffraction techniques, J. Appl. Phys. 89, 662–668 (2001).

    Article  Google Scholar 

  59. T.S. Duffy, G. Shen, J. Shu, H. Mao, R.J. Hemley, and A.K. Singh, Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa, J. Appl. Phys. 86, 6729–6735 (1999).

    Article  CAS  Google Scholar 

  60. G.J. Piermarini, S. Block, and J.D. Barnett, Hydrostatic limits in liquids and solids to 100 kbar, J. Appl. Phys. 44, 5377–5382 (1973).

    Article  CAS  Google Scholar 

  61. D.M. Adams, R. Appleby, and S.K. Sharma, Spectroscopy at very high pressures: Part X. Use of ruby R-lines in the estimation of pressure at ambient and at low temperatures, J. Phys. E: Sci. Instrum. 9, 1140–1144 (1976).

    Article  CAS  Google Scholar 

  62. Y.M. Gupta and X.A. Shen, Potential use of the ruby R2 line shift for static high-pressure calibration, Appl. Phys. Lett. 58, pp. 583–585 (1991).

    Article  CAS  Google Scholar 

  63. S.M. Sharma and Y.M. Gupta, Theoretical analysis of R-line shifts of ruby subjected to different deformation conditions, Phys. Rev. B 43, 879–893 (1991).

    Article  CAS  Google Scholar 

  64. X.A. Shen and Y.M. Gupta, Effect of crystal orientation on ruby R-line shifts under shock compression and tension, Phys. Rev. B 48, 2929–2940 (1993).

    Article  CAS  Google Scholar 

  65. Z.A. Dreger, N. Trotman, and Y.M. Gupta, in preparation.

    Google Scholar 

  66. M. Pope and E.Ch. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press: New York (1999).

    Google Scholar 

  67. E.A. Silinsh and V. Capek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena, Springer: New York (2000).

    Google Scholar 

  68. N. Karl, High purity organic molecular crystals, in: Crystals, H.C. Freyhardt, ed., Springer: New York (1980), pp. 1–100.

    Google Scholar 

  69. S. Wiederhorn and H.G. Drickamer, The effect of pressure on the near-ultra-violet spectra of some fused-ring aromatic crystals, J. Phys. Chem. Solids 9, pp. 330–334 (1959).

    Article  CAS  Google Scholar 

  70. P.F. Jones and M. Nicol, Excimer fluorescence of crystalline anthracene and naphthalene produced by high pressure, J. Chem. Phys. 43, 3759–3760 (1965).

    Article  CAS  Google Scholar 

  71. H.W. Offen, Fluorescence spectra of several aromatic crystals under high pressures, J. Chem. Phys. 44, 699–703 (1966).

    Article  CAS  Google Scholar 

  72. P.F. Jones, Excimer emission of naphthalene, anthracene, and phenanthrene crystals produced by very high pressures, J. Chem. Phys. 48, 5440–5447 (1968).

    Article  CAS  Google Scholar 

  73. B.Y. Okamoto and H.G. Drickamer, Evaluation of configuration coordinate parameters from high pressure optical data. I. phenanthrene, anthracene, and tetracene, J. Chem. Phys. 61, 2870–2877 (1974).

    Article  CAS  Google Scholar 

  74. M. Nicol, M. Vernon, and J.T. Woo, Raman spectra and defect fluorescence of anthracene and naphthalene crystals at high pressures and low temperatures, J. Chem. Phys. 63, 1992–1999 (1975).

    Article  CAS  Google Scholar 

  75. Z.A. Dreger, H. Lucas, and Y.M. Gupta, High-pressure effects on fluorescence of anthracene crystals, J. Phys. Chem. B 107, 9268–9274 (2003).

    Article  CAS  Google Scholar 

  76. Z.A. Dreger, E. Balasubramaniam, Y.M. Gupta, and A.G. Joly, in preparation.

    Google Scholar 

  77. N. Hemmi, Z.A. Dreger, and Y.M. Gupta, Time-resolved electronic spectroscopy to examine shock-wave-induced changes in anthracene single crystals, J. Phys. Chem. C 112, 7761–7766 (2008).

    Article  CAS  Google Scholar 

  78. P.M. Robinson and H.G. Scott, Plastic deformation of anthracene single crystals, Acta. Met-all. 15, 1581–1590(1967).

    Article  CAS  Google Scholar 

  79. M. Oehzelt, R. Resel, and A. Nakayama, High-pressure structural properties on anthracene up to 10 GPa, Phys. Rev. B 66, 174104–174104-5 (2002).

    Article  CAS  Google Scholar 

  80. J. Bernstein, Polymorphism in Molecular Crystals, Clarendon Press: Oxford (2002).

    Google Scholar 

  81. H.H. Cady and L.C. Smith, Studies on the polymorphs of HMX, LAMS-2652 (TID-450017th ed.) (1962).

    Google Scholar 

  82. Holston Defense Corporation (Eastman Kodak, Kingsport, TN), Physical and chemical properties of RDX and HMX, Control No.20-P-26 Series B (1962).

    Google Scholar 

  83. P. Main, R.E. Cobbledick, and R.W.H. Small, Structure of the fourth form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (y-HMX), 2C4H8N8O8.0.5H2O, Acta. Cryst. C 41, 1351–1354 (1985).

    Article  Google Scholar 

  84. F. Goetz, T.B. Brill, and J.F. Ferraro, Pressure dependence of the Raman and infrared spectra of α-, β-, γ-, and δ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine J. Phys. Chem. 82, pp. 1912–1917 (1978).

    Article  CAS  Google Scholar 

  85. M.F. Foltz, C.L. Coon, F Garcia, and A.L. Nichols III, The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part I and Part II, Propel. Explosiv. Pyrotech. 19, 19–25; 133–144 (1994).

    Article  CAS  Google Scholar 

  86. T.P. Russell, PJ. Miller, G.J. Piermarini, and S. Block, High-pressure phase transition in γ-hexanitrohexaazaisowurtzitane, J. Phys. Chem. 96, 5509–5512 (1992).

    Article  CAS  Google Scholar 

  87. T.P. Russell, PJ. Miller, GJ. Piermarini, and S. Block, Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane, J. Phys. Chem. 97, 1993–1997 (1993).

    Article  CAS  Google Scholar 

  88. J. Lin and T.B. Brill, Kinetics of Solid Polymorphic Phase Transitions of CL-20, Propellants, Explosives, Pyrotechnics, 32, 326–330 (2007).

    Article  CAS  Google Scholar 

  89. T.B. Brill and R.J. Karpowicz, Solid phase transition kinetics. The role of intermolec-ular forces in the condensed-phase decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem. 86, 4260–4265 (1982).

    Article  CAS  Google Scholar 

  90. B.F Henson, B.W. Asay, R.K. Sander, S.F Son, J.M. Robinson, and P.M. Dickson, Dynamic Measurement of the HMX β- δ Phase Transition by Second Harmonic Generation, Phys. Rev. Lett. 82, 1213–1216 (1999).

    Article  CAS  Google Scholar 

  91. B.F. Henson, L. Smilowitz, B.W. Asay, and P.M. Dickson, The β - δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Thermodynamics, J. Chem. Phys. 117, 3780–3788 (2002).

    Article  CAS  Google Scholar 

  92. L. Smilowitz, B.F. Henson, B.W. Asay, and P.M. Dickson, The β-δ phase transition in the energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Kinetics, J. Chem. Phys. 117, 3789–3798 (2002).

    Article  CAS  Google Scholar 

  93. L. Smilowitz, B.F. Henson, M. Greenfield, A. Sas, B.W. Asay, and P.M. Dickson, On the nucleation mechanism of the β- δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Chem. Phys. 121, 5550–5552 (2004).

    Article  CAS  Google Scholar 

  94. A.K. Burnham, R.K. Weese, and B.L. Weeks, A distributed activation energy model of ther-modynamically inhibited nucleation and growth reactions and its application to the β-δ phase transition of HMX,J. Phys. Chem. B 108, 19432–19441 (2004).

    Article  CAS  Google Scholar 

  95. J.E. Patterson, Z.A. Dreger, and Y.M. Gupta, Shock wave-induced phase transition in RDX crystals, J. Phys. Chem. B 111, 10897–10904 (2007).

    Article  CAS  Google Scholar 

  96. WC. McCrone, Crystallographic data 32. RDX cyclotrimethylenetrinitramine Anal. Chem. 22, 954–955 (1950).

    Article  CAS  Google Scholar 

  97. C.S. Choi and E. Prince, The crystal structure of cyclotrimethylenetrinitramine, Acta Cryst. B 28, 2857–2862 (1972).

    Article  CAS  Google Scholar 

  98. B. Olinger, B. Roof, and H. Cady, in Proceedings of international symposium on high dynamic pressures, Paris, France, (1978), pp. 3–8.

    Google Scholar 

  99. R.J. Karpowicz, S.T. Sergio, and T.B. Brill, β-polymorph of hexahydro-1,3,5-trinitro-s-triazine. A Fourier transform infrared spectroscopy study of an energetic material, Ind. Eng. Chem. Prod. Res. Dev. 22, 363–365 (1983).

    Article  CAS  Google Scholar 

  100. R.J. Karpowicz and T.B. Brill, Comparison of the molecular structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution and solid phases, J. Phys. Chem. 88, 348–352 (1984).

    Article  CAS  Google Scholar 

  101. B.J. Baer, J. Oxley, and M. Nicol, The phase diagram of RDX (hexahydro-1,3,5-trinitro-s-triazine) under hydrostatic pressure, High Pressure Res. 2, 99–108 (1990).

    Article  Google Scholar 

  102. P.J. Miller, S. Block, and G.J. Piermarini, Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX, Combust. Flame 83, 174–184 (1991).

    Article  CAS  Google Scholar 

  103. C.S. Yoo, H. Cynn, W.M. Howard, and N. Holmes, Equations of state of unreacted high explosives at high pressures, in: Eleventh International Detonation Symposium, pp. 951–957 (1998).

    Google Scholar 

  104. N. Goto, H. Yamawaki, K. Wakabayashi, Y. Nakayama, M. Yoshida, and M. Koshi, High pressure phase of RDX, Science and Technology of Energetic Materials 66, 291–300 (2005).

    CAS  Google Scholar 

  105. N. Goto, H. Fujihisa, H. Yamawaki, K. Wakabayashi, Y. Nakayama, M. Yoshida, and M. Koshi, Crystal structure of the high-pressure phase of hexahydro-1,3,5-trinitro-1,3,5-triazine (γ-RDX), J. Phys. Chem. B 110, 23655–23659 (2006).

    Article  CAS  Google Scholar 

  106. J.A. Ciezak, T.A. Jenkins, Z. Liu, and R.J. Hemley, High-Pressure Vibrational Spectroscopy of Energetic Materials: Hexahydro-1,3,5-trinitro-1,3,5-triazine, J. Phys. Chem. A 111, 59–63 (2007).

    Article  CAS  Google Scholar 

  107. Z.A. Dreger and Y.M. Gupta, High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-triazine (RDX), J. Phys. Chem. B 111, 3893–3903 (2007).

    Article  CAS  Google Scholar 

  108. A. Filhol, C. Clement, M. Forel, J. Paviot, M. Rey-Lafon, G. Richoux, C. Trinquecoste, and J. Cherville, Molecular conformation of 1,3,5-trinitrohexahydro-s-triazine (RDX) in solution, J. Phys. Chem. 75, 2056–2060 (1971).

    Article  Google Scholar 

  109. M. Rey-Lafon, R. Cavagnat, C. Trinquecoste, and M.T. Forel, Etude des specters de vibration de la trinitro-1,3,5 hexahydro s-triazine J. Chem. Phys. Physicochim. Biol. 68, 1575–1577 (1971).

    Google Scholar 

  110. J.J. Haycraft, L.L. Stevens, and C.J. Eckhardt, Single-crystal, polarized, Raman scattering study of the molecular and lattice vibrations for the energetic material cyclotrimethylene trinitramine J. Appl. Phys. 100, 053508–053817 (2006).

    Article  CAS  Google Scholar 

  111. J.C. Decius and R.M. Hexter, Molecular Vibrations in Crystals, McGraw-Hill: New York (1977).

    Google Scholar 

  112. W.G. Fateley, F.R. Dillish, N.T. McDevitt, and F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation method, Wiley: New York (1972).

    Google Scholar 

  113. D.E. Hooks, K.J. Ramos, and A.R. Martinez, Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa, J. Appl. Phys. 100, 024908-1–024908-7 (2006).

    Article  CAS  Google Scholar 

  114. J.M. Winey, private communications.

    Google Scholar 

  115. R. Cheret, Detonation of Condensed Explosives, Springer: New York (1993).

    Google Scholar 

  116. J.J. Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetran-itrate explosive, Appl. Phys. Lett. 44, 859–861 (1984).

    Article  CAS  Google Scholar 

  117. J.J. Dick, R.N. Mulford, W.J. Spencer, D.R. Pettit, E. Garcia, and D.C. Shaw, Shock response of pentaerythritol tetranitrate single crystals, J. Appl. Phys. 70, 3572–3587 (1991).

    Article  CAS  Google Scholar 

  118. J.J. Dick, Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals, J. Appl. Phys. 81, 601–612 (1997).

    Article  CAS  Google Scholar 

  119. J.J. Dick and J.P. Ritchie, Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate, J. Appl. Phys. 76, 2726–2737 (1994).

    Article  CAS  Google Scholar 

  120. Y.A. Gruzdkov and Y.M. Gupta, Shock wave initiation of pentaerythritol tetranitrate single crystals: mechanism of anisotropic sensitivity, J. Phys. Chem. 100, 11169–11176 (2000).

    Google Scholar 

  121. Y.A. Gruzdkov, Z.A. Dreger, and Y.M. Gupta, Experimental and theoretical study of pen-taerythritol tetranitrate conformers, J. Phys. Chem. A 108, 6216–6221 (2006).

    Article  CAS  Google Scholar 

  122. K.E. Lipinska-Kalita, M.G. Pravica, and M.F. Nicol, Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate C(CH2ONO2)4, J. Phys. Chem. B 109, 19223–19227 (2005).

    Article  CAS  Google Scholar 

  123. M.G. Pravica, K.E. Lipinska-Kalita, Z. Quine, E. Romano, Y. Shen, M.F. Nicol, and W.J. Pravica, Studies of phase transitions in PETN at high pressures, J. Phys. Chem. Solids 67, 2159–2163 (2006).

    Article  CAS  Google Scholar 

  124. B.M. Rice and E.F.C. Byrd, Theoretical chemical characterization of energetic materials, J. Mat. Res. 21, 2444–2452 (2006).

    Article  CAS  Google Scholar 

  125. D.L. Naud and K.R. Brower, Pressure effects on the thermal decomposition of nitramines, nitrosamines, and nitrate esters, J. Org. Chem. 57, 3303–3308 (1992).

    Article  CAS  Google Scholar 

  126. L.L. Davis and K.R. Brower, Reactions of organic compounds in explosive-driven shock waves, J. Phys. Chem. 100, 18775–18783 (1996).

    Article  CAS  Google Scholar 

  127. L.L. Davis, Reactions of organic compounds in explosive-driven shock waves, Ph.D. Dissertation, New Mexico Institute of Mining and Technology, (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dreger, Z.A. (2009). Understanding Shock-Induced Changes in Molecular Crystals. In: Peiris, S.M., Piermarini, G.J. (eds) Static Compression of Energetic Materials. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68151-9_6

Download citation

Publish with us

Policies and ethics