Advertisement

Equations of State of Binders and Related Polymers

  • Dana M. Dattelbaum
  • Lewis L. Stevens
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

The union of high-explosive molecules (HEs) with polymeric binders to form plastic-bonded (PBXs) explosives was an important advancement in high-explosives science, offering improved safety and reliability, while maintaining performance [1]. The development of PBXs would not have been possible without several timely improvements in explosives technology, including an ability to produce decreased sensitivity materials, improved chemical stabilities, and greater manufacturing re-producibility. From a practical standpoint, the development of PBXs also brought improved machinability, improved engineering properties, and enhanced chemical resistance and long-term chemical stability. Eventually, insensitive high-explosive (IHEs) molecules were incorporated into PBXs. The development of IHE-based PBXs allowed for even greater flexibility in the choice of polymeric binders, permitting the use of higher-density binders such as fluorinated polymers. Examples of modern IHE-containing PBXs used by the Department of Energy are PBX 9502 (Figs. 4.1 and 4.2) (95% TATB/5% Kel-F 800) and LX-17 (92.5% TATB/7.5% Kel-F 800), which use the copolymer poly(chlorotrifluoroethylene-co-vinylidene fluoride) or Kel-F 800, as the polymeric binder. The structures of TATB and Kel-F 800 are shown below.

The investigation of the properties of plastic-bonded explosives and related pro-pellant formulations will continue to drive research and development at defense laboratories, particularly as simulations demand new models with improved fidelity, and political and applications drivers dictate the development of new energetic material formulations with improved safety. Recent requirements for insensitive and combat safe munitions are currently motivating the development of new PBXs, pro-pellants, and related formulations. For example, the United States Department of Defense recently established a policy that all new munitions must be able to withstand fire, accidents, or attack (such as by gun fire). In addition to conventional weapons applications, plastic-bonded explosives will continue to be used in applications where their flexibility can be exploited including reactive armor applications, cutting explosives, and booster charges.

Keywords

Bulk Modulus Free Volume Shock Compression Helmholtz Free Energy Shock Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    James, E. The Development of Plastic Bonded Explosives , Lawrence Livermore National Laboratory, UCRL-12439, 1965.Google Scholar
  2. 2.
    Allcock, H. R.; Lampe, F. W. Contemporary Polymer Chemistry ; Prentice Hall: Englewood Cliffs, NJ, 1990.Google Scholar
  3. 3.
    Flory, P. J. Principles of Polymer Chemistry ; Cornell University Press: Ithaca, NY/London, 1953.Google Scholar
  4. 4.
    Dobratz, B. M.; Crawford, P. C. Lawrence Livermore National Laboratories Explosive Handbook: Properties of Chemical Explosives and Explosive Simulants; University of California: Livermore, CA, 1985.Google Scholar
  5. 5.
    Eerligh, R.; van Gool, M. A.; Kramer, R. E.; van Ham, N. H. A. 17th International Annual Conference of ICT, 1986, pp. 10.1–10.12.Google Scholar
  6. 6.
    Hercules, Urethane Technology; 1 January 1989, p. 33.Google Scholar
  7. 7.
    Hercules, Chemical Week, 12 December 1981.Google Scholar
  8. 8.
    Akhavan, J.; Burke, T. C. Prop. Expl. Pyro. 17, 271–274, 1992.Google Scholar
  9. 9.
    Johnson, H. D.; Osborn, A. G.; Stallings, T. L.; Anthony, T. R. “MHSMP-77–54 Process Endeavor No. 105,” Pantex Plant, 1977.Google Scholar
  10. 10.
    Osborn, A. G.; Stallings, T. L.; Johnson, H. D. “MHSMP-78–57 Process Endeavor No. 105,” Pantex Plant, 1978.Google Scholar
  11. 11.
    Benzinger, T. M.; Loughran, E. D.; Davey, R. K. LA-8436-MS, Los Alamos National Laboratory, 1980.Google Scholar
  12. 12.
    Stallings, T. L.; Osborn, A. G.; Johnson, H. D. MHSMP-81–17, Pantex Plant, 1981.Google Scholar
  13. 13.
    Dobratz, B. “The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization — 1888 to 1994,” Los Alamos National Laboratory, 1995, LA-13014-H, UC-741.Google Scholar
  14. 14.
    Field, J. E.; Swallowe, G. M.; Pope, P. H.; Palmer, S. J. P. Inst. Phy. Conf. Ser., Oxford, 70, 381, 1984.Google Scholar
  15. 15.
    Arnold, W. 35th Int. Ann. Conf. ICT, Karlsruhe, Germany, 2005, pp. 188-1–188-14.Google Scholar
  16. 16.
    Eich, T.; Wild, R. 34th Int. Ann. Conf. ICT, Karlsruhe, Germany, 2003, p. 99–1.Google Scholar
  17. 17.
    Mostafa, A. 37th Int. Ann. Conf. ICT, Karlsruhe, Germany, 2006, p. 56–1.Google Scholar
  18. 18.
    Parker, R. 21st Int. Ann. Conf. ICT, Karlsruhe, Germany, 1990, p. 15–1.Google Scholar
  19. 19.
    Vandenburg, E. J. United States, 1972.Google Scholar
  20. 20.
    Vandenberg, E. J.; Woods, F.; Inc., H., Ed. U. S., 1972; Vol. 3, pp. 645, 917.Google Scholar
  21. 21.
    Frankel, M. B.; Flanagan, J. E.; International, R., Ed. U. S., 1981, Vol. 4, pp. 268, 450.Google Scholar
  22. 22.
    Frankel, M. B.; Wilson, E. R.; Woolery, D. O.; Hamermesh, C. L.; McArthur, C. Gov. Rep. Announce. Index 82, 2156, 1982.Google Scholar
  23. 23.
    Frankel, M. B.; Wilson, E. R.; Woolery, D. O.; Hamermesh, C. L.; McArthur, C. Chem. Abst. 97, 110490, 1982.Google Scholar
  24. 24.
    Frankel, M. B.; Wilson, E. R.; Woolery, D. O.; Hamermesh, C. L.; McArthur, C. Chem. Abst. 97, 74986, 1982.Google Scholar
  25. 25.
    Kubota, N. Combustion Mechanism of Azide Polymer (I) and Part II, Japanese Defense Agency, 1988.Google Scholar
  26. 26.
    Lavigne, J.; Lessard, P.; Ahad, E.; Dubois, C. International Symposium of Energetic Materials Technology, Orlando, FL, 1994, pp. 265–271.Google Scholar
  27. 27.
    Leu, A.; Shen, S.; Wu, B. 21st Int. Ann. Conf. ICT, Karlsruhe, Germany, 1990, p. 6–1.Google Scholar
  28. 28.
    Tokui, H.; Saitoh, T.; Hori, K.; Notono, K.; Iwama, A. 21st Int. Ann. Conf. ICT, Karlsruhe, Germany, 1990 p. 7–1.Google Scholar
  29. 29.
    Kubota, N.; Sonobe, T.; Yamamoto, A.; Shimizu, H. J. Prop. Power 6, 686, 1990.Google Scholar
  30. 30.
    Kubota, N. Prop. Explos. Pyro. 13, 172, 1988.Google Scholar
  31. 31.
    Keicher, T.; Wasmann, F.-W. Prop. Expl. Pyro. 17, 182, 1992.Google Scholar
  32. 32.
    Rizzo, H. F.; Humphrey, J. R.; Kolb, J. R. Prop. and Expl. 6, 57–62, 1981.Google Scholar
  33. 33.
    Gibbs, T. R.; Popolato, A. LASL Explosive Property Data; University of California Press: Berkeley/Los Angeles, CA, 1980.Google Scholar
  34. 34.
    Roy, S. B.; Roy, P. B. J. Phys.: Condens. Matter 11, 1999.Google Scholar
  35. 35.
    Godwal, B. K.; Sikka, S. K.; Chidambaram, R. Phys. Rep. 102, 1983.Google Scholar
  36. 36.
    MacDonald, J. R. Rev. Mod. Phys. 41, 1969.Google Scholar
  37. 37.
    Tonelli, A. E.; Srinivasarao, M. Polymers from the Inside Out An Introduction to Macro-molecules; Wiley: New York, 2001.Google Scholar
  38. 38.
    Seymour, R. B.; Carraher, C. E. Structure-Property Relationships in Polymers; Plenum Press: New York, 1984.Google Scholar
  39. 39.
    Rosa, C. D.; Auriemma, F.; Perretta, C. Macromolecules 27, 2004.Google Scholar
  40. 40.
    Tait, P. G. Phys. Chem. 2, 1, 1888.Google Scholar
  41. 41.
    Murnaghan, F. D. Proc. Nat. Acad. Sci. 30, 1944.Google Scholar
  42. 42.
    Murnaghan, F. D. Finite Deformation of an Elastic Body; Wiley: New York, 1951.Google Scholar
  43. 43.
    Birch, F. Phys. Rev. 71, 1947.Google Scholar
  44. 44.
    Vinet, P.; Smith, J. R.; Ferrante, J.; Rose, J. H. J. Phys. C 19,1986.Google Scholar
  45. 45.
    Vinet, P.; Rose, J. H.; Ferrante, J.; Smith, J. R. J. Phys.: Condens. Matter 1, 1989.Google Scholar
  46. 46.
    Sun, Z.; Song, M.; Yan, Z. Polymer 33, 328, 1992.Google Scholar
  47. 47.
    Dymond, J. H.; Malhotra, R. Int. J. Thermophys. 9, 1988.Google Scholar
  48. 48.
    Neece, G. A.; Squire, D. R. J. Phys. Chem. 72, 128, 1968.Google Scholar
  49. 49.
    Cutler, W. G.; McMickle, R. H.; Webb, W.; Sciessler, R. W.J. Chem. Phys. 29, 1958.Google Scholar
  50. 50.
    Dattelbaum, D. M.; Jensen, J. D.; Schwendt, A. M.; Kober, E. M.; Lewis, M. W.; Menikoff, R. J. Chem. Phys. 122, 144903, 2005.Google Scholar
  51. 51.
    Hayward, A. T. J.Brit. J. Appl. Phys. 18, 1967.Google Scholar
  52. 52.
    Curro, J. G. J. Macromol. Sci.- Rev. Macromol. Chem. C 11, 321,1974.Google Scholar
  53. 53.
    Johnson, J. N. Am. J. Phys. 36, 1968.Google Scholar
  54. 54.
    Prigogine, I.; Trappeniers, N.; Mathot, V. Disc. Faraday Soc. 15, 1953.Google Scholar
  55. 55.
    Prigogine, I. The Molecular Theory of Solutions; North-Holland: Amsterdam, 1957.Google Scholar
  56. 56.
    Prigogine, I.; Bellemans, A.; Naar-Colin, C. J. Chem. Phys. 26, 1957.Google Scholar
  57. 57.
    Flory, P. J.; Orwoll, R. A.; Vrij, A. J. Am. Chem. Soc. 86, 3507, 1964.Google Scholar
  58. 58.
    Sanchez, I. C.; Lacombe, R. H. Nature 252, 1974.Google Scholar
  59. 59.
    Sanchez, I. C.; Lacombe, R. H. J. Phys. Chem. 80, 2352, 1976.Google Scholar
  60. 60.
    Simha, R.; Somcynsky, T. Macromolecules 2, 342, 1969.Google Scholar
  61. 61.
    Lewis, G. N.; Randall, M. Thermodynamics; 2nd ed.; McGraw-Hill: New York, 1961.Google Scholar
  62. 62.
    Mortimer, R. G. Physical Chemistry; 2nd ed.; Academic Press: San Diego, 2000.Google Scholar
  63. 63.
    Sandia National Laboratory: Albuquerque, NM.Google Scholar
  64. 64.
    MacDonald, J. R. Rev. Mod. Phys. 38, 1966.Google Scholar
  65. 65.
    Baonza, V. G.; Cáceres, M.; Núñez, J. Phys. Rev. B 51, 1995.Google Scholar
  66. 66.
    Cho, J.; Sanchez, I. C. In Polymer Handbook; 4th ed.; Wiley: New York, 1999.Google Scholar
  67. 67.
    Tammann, G. Über die Beziehungen zwischen den inneren Kräften und Eigenschaften der L ösungen; Leopold Voss: Hamburg, 1907.Google Scholar
  68. 68.
    Rodgers, P. A. J. Appl. Poly. Sci. 48, 1061–1080, 1993.Google Scholar
  69. 69.
    Hemley, R. J.; Mao, H. K.; Finger, L. W.; Jephcoat, A. P.; Hazen, R. M.; Zha, C. S. Phys. Rev. B 42, 1990.Google Scholar
  70. 70.
    Cohen, R. E.; Gulseren, O.; Hemley, R. J. Am. Mineralogist 85, 338–344, 2000.Google Scholar
  71. 71.
    MacQuarrie, D. A. Statistical Mechanics; Harper & Row: New York, 1976.Google Scholar
  72. 72.
    Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, 1987.Google Scholar
  73. 73.
    Shen, M.; Hansen, W.; Romo, P. J. Chem. Phys. 51, 1969.Google Scholar
  74. 74.
    Wada, Y.; Itani, A.; Nishi, T.; Nagai, S. J. Polym. Sci. 7, 1969.Google Scholar
  75. 75.
    Prigogine, I.; Garikian, G. Physica 16, 239, 1950.Google Scholar
  76. 76.
    Prigogine, I.; Mathot, V. J. Chem. Phys. 20, 1952.Google Scholar
  77. 77.
    Hellwege, K.-H.; Knappe, W.; Lehmann, P. Kolloid-Z. Z. Polym. 183, 1962.Google Scholar
  78. 78.
    Dee, G. T.; Walsh, D. J. Macromolecules 21, 815, 1988.Google Scholar
  79. 79.
    Zoller, P. J. of Poly. Sci.: Polym. Phys. Edn. 20, 1453–1464, 1982.Google Scholar
  80. 80.
    TA Instruments Product Information.Google Scholar
  81. 81.
    Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.; Gustavsen, R. L.; Orler, E. B.; Velisavljevic, N. in preparation.Google Scholar
  82. 82.
    Fox, T. G.Bull. Am. Phys. Soc 1, 123, 1956.Google Scholar
  83. 83.
    Shen, M. C.; Eisenberg, A. Rub. Chem. Tech. 43, 95, 1970.Google Scholar
  84. 84.
    Manzara, A.; Orler, E. B.; Dattelbaum, D. M. Private communication, 2006.Google Scholar
  85. 85.
    Orler, E. B. Unpublished results Los Alamos National Laboratory, 2007.Google Scholar
  86. 86.
    Roland, C. M.; Hensel-Bielowka, S.; Paluch, M.; Casalini, R. Rep. Prog. Phys. 68, 1405– 1478, 2005.Google Scholar
  87. 87.
    Skorodumov, V. F.; Godovskii, V. K. Polym. Sci. U.S.S.R. 29, 127–133, 1987.Google Scholar
  88. 88.
    Mao, H. K.; Hemley, R. J. In Reviews in Mineralogy. Ultrahigh-Pressure Minerology: Physics and Chemistry of the Earth's Deep Interior, Vol. 37; Hemley, R. J., Ed.; Minero-logical Society of America: Washington, DC, 1998.Google Scholar
  89. 89.
    Bridgman, P. M. The Physics of High Pressure; G. Bell & Sons: London, 1958.Google Scholar
  90. 90.
    Kawai, N.; Endo, S. Rev. Sci. Instrum. 41, 1178, 1970.Google Scholar
  91. 91.
    Boyd, F. R.; England, J. L. J. Geophys. Res. 65, 741, 1960.Google Scholar
  92. 92.
    Weir, C. E. J. Res. Nat. Bur. Stand. 46, 207, 1951.Google Scholar
  93. 93.
    Weir, C. E. J. Res. Nat. Bur. Stand. 53, 245, 1954.Google Scholar
  94. 94.
    Bridgman, P. W. Am. Acad. Arts Sci. 76, 71, 1948.Google Scholar
  95. 95.
    Sanchez, I. C.; Cho, J. Polymer 36, 2929–2939, 1995.Google Scholar
  96. 96.
    Sachdev, V. K.; Yahsi, U.; Jain, R. K. J. Poly. Sci. Part B: Polymer Physics 36, 841–850, 1998.Google Scholar
  97. 97.
    Yan, Z.-T. Commun. Theor. Phys. 17, 389–392, 1992.Google Scholar
  98. 98.
    Zoller, P.; Fakhreddine, Y. A. Thermochimica Acta 238, 397–415, 1994.Google Scholar
  99. 99.
    Patrickios, C. S.; Lue, L. J. Chem. Phys. 113, 5485, 2000.Google Scholar
  100. 100.
    Kontogeorgis, G. M.; Harismiadis, V. I.; Fredenslund, A.; Tassios, D. P. Fluid Phase Equilibria 96, 65–92, 1994.Google Scholar
  101. 101.
    Tochigi, K.; Kurita, S.; Matsumoto, T. Fluid Phase Equilibria 160, 313–320, 1999.Google Scholar
  102. 102.
    Brostow, W.; Duffy, J. V.; Lee, G. F.; Madejczyk, K. Macromolecules 24, 479–493, 1991.Google Scholar
  103. 103.
    Barrett, A. J.; Domb, C. J. Stat. Phys. 77, 491–500, 1994.Google Scholar
  104. 104.
    Kang, J. W.; Lee, J. H.; Yoo, K. P.; Lee, C. S. Fluid Phase Equilibria 194, 77–86, 2002.Google Scholar
  105. 105.
    Sun, Z. H.; Song, M. Acta Chimica Sinica 50, 729–733, 1992.Google Scholar
  106. 106.
    Schmidt, M.; Maurer, F. H. J. J. Poly. Sci. B: Polym. Phys. 36, 1061, 1998.Google Scholar
  107. 107.
    Zoller, P. In The Polymer Handbook; Brandrup, J., Immergut, E. H., Eds.; Wiley: New York, 1989.Google Scholar
  108. 108.
    Lichtenthaler, R. N.; Liu, D. D.; Prausnitz, J. M. Macromolecules 11, 192, 1978.Google Scholar
  109. 109.
    Sachdev, V. K.; Jain, P. C.; Nanda, V. S. Mat. Res. Soc. Symp. Proc. 22, 243, 1984.Google Scholar
  110. 110.
    Zoller, P.; Bolli, P.; Pahud, V.; Ackermann, H. Rev. Sci. Instrum. 47, 948, 1976.Google Scholar
  111. 111.
    Gnomix PVT Apparatus, P. Zoller, Boulder, CO 80304, USA.Google Scholar
  112. 112.
    Zoller, P.; Walsh, D. J. Standard Pressure-Volume-Temperature Data for Polymers; Tech-nomic Publishing: Lancaster, 1995.Google Scholar
  113. 113.
    Ames, R. G. MRS Symp. Proceedings, 2006, 896.Google Scholar
  114. 114.
    Dattelbaum, D. M.; Velisavljevic, N.; Emmons, E.; Stahl, D. B.; Sheffield, S. A.; Weinberg, M.; Orler, E. B.; Brown, E. N.; Rae, P. J. Unpublished report; Los Alamos National Laboratory, 2007.Google Scholar
  115. 115.
    Roland, C. M.; Hensel-Bielowka, S.; Paluch, M.; Casalini, R. Rep. Prog. Phys. 68, 1405, 1995.Google Scholar
  116. 116.
    Dattelbaum, D. M.; Sheffield, S. A.; Weinberg, M.; Stahl, D. B.; Neel, K.; Thadani, N. J. Appl. Phys. 2008 in press.Google Scholar
  117. 117.
    Cady, W. E.; Caley, L. E. Properties of Kel F-800 Polymer, Lawrence Livermore National Laboratory, 1977 UCRL-52301.Google Scholar
  118. 118.
    Clements, B. E.; Maciucescu, L.; Brown, E. N.; Rae, P.; Orler, E. B.; Dattelbaum, D. M.; Sheffield, S. A.; Robbins, D. L.; Gustavsen, R. L.; Velisavljevic, N. Campaign 2, level 2 DOE milestone report: KEL-F 800 Experimental characterization and model development, Los Alamos National Laboratory, 2007.Google Scholar
  119. 119.
    Stevens, L. L.; Orler, E. B.; Dattelbaum, D. M.; Ahart, M.; Hemley, R. J. J. Chem. Phys. 127, 104905, 2007.Google Scholar
  120. 120.
  121. 121.
    Mao, H. K.; Bell, P. M. Science 191, 851, 1976.Google Scholar
  122. 122.
    Jarayman, A. Rev. Mod. Phys. 55, 65, 1983.Google Scholar
  123. 123.
    Caminiti, R.; Pandolfi, L.; Ballirano, P. J. Macromol. Sci., B: Phys. 39, 481, 2000.Google Scholar
  124. 124.
    Yamamoto, T.; Miyaji, H.; Asai, K. Jpn. J. Appl. Phys. 16, 1891, 1977.Google Scholar
  125. 125.
    Fontana, L. e. a. Phys. Rev. B 75, 174112, 2007.Google Scholar
  126. 126.
    Wang, H. C.; Aubuchon, S. R.; Thompson, D. G.; Osborn, J. C.; Marsh, A. L.; Nichols, W. R.; Schoonover, J. R.; Palmer, R. A. Macromolecules 35, 8794–8801, 2002.Google Scholar
  127. 127.
    Wang, H. C.; Thompson, D. G.; Schoonover, J. R.; Aubuchon, S. R.; Palmer, R. A. Macro-molecules 34, 7084–7090, 2001.Google Scholar
  128. 128.
    Graff, D. K.; Wang, H. C.; Palmer, R. A.; Schoonover, J. R. Macromolecules 32, 7147–7155, 1999.Google Scholar
  129. 129.
    Wang, H. C.; Graff, D. K.; Schoonover, J. R.; Palmer, R. A. Appl. Spectr. 53, 687–696, 1999.Google Scholar
  130. 130.
    Dattelbaum, D. M.; Robbins, D. L.; Sheffield, S. A.; Orler, E. B.; Gustavsen, R. L.; Alcon, R. R.; Lloyd, J. M.; Chavez, P. J. AIP Conf. Proc. 845, 69–72, 2006.Google Scholar
  131. 131.
    Emmons, E. D.; Velisavljevic, N.; Schoonover, J. R.; Dattelbaum, D. M. Appl. Spectr. 2008, 62, p. 142–148.Google Scholar
  132. 132.
    Bunn, C. W.; Howells, E. R. Nature 174 , 549, 1954.Google Scholar
  133. 133.
    Beecroft, R. I.; Swenson, C. A. J. Appl. Phys. 30 , 1793, 1959.Google Scholar
  134. 134.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 76 , 71, 1948.Google Scholar
  135. 135.
    Wu, C. K.; Nicol, M. Chem. Phys. Lett. 21 , 153, 1973.Google Scholar
  136. 136.
    Flack, H. D. J. Polym. Sci: Part A-2 10, 1799, 1972.Google Scholar
  137. 137.
    Koenig, J. L.; Boerio, F. J. J. Chem. Phys. 50 , 2823, 1969.Google Scholar
  138. 138.
    Boerio, F. J.; Koenig, J. L. J. Po l ym . S c i : Pa rt A - 2 9 , 1517, 1971.Google Scholar
  139. 139.
    Koenig, J. L.; Boerio, F. J. J. Chem. Phys. 52 , 4170, 1970.Google Scholar
  140. 140.
    Hannon, M. J.; Boerio, F. J.; Koenig, J. L. J. Chem. Phys. 50 , 2829, 1969.Google Scholar
  141. 141.
    Rabolt, J. F.; Piermarini, G.; Block, S. J. Chem. Phys. 69 , 2872, 1978.Google Scholar
  142. 142.
    Brown, R. G.J. Chem. Phys. 40 , 2900, 1964.Google Scholar
  143. 143.
    Weir, C. E. J. Res. Natl. Bur. Stand. 50 , 95, 1953.Google Scholar
  144. 144.
    Eby, R. K.; Clark, E. S.; Farmer, B. L.; Piermarini, G. J.; Block, S. Polymer 3 1 , 2227–2237, 1990.Google Scholar
  145. 145.
    Nicol, M.; Wiget, J. M.; Wu, C. K. J. Polym. Sci.: Polymer Phys. Ed. 18 , 1087–1102, 1980.Google Scholar
  146. 146.
    Scheirs, J. In Modern Fluoropolymers ; J. Scheirs, Ed.; Wiley: Chichester, England, 1997.Google Scholar
  147. 147.
    Christen, D.; Hoffmann, V.; Klaeboe, P. Z. Naturforsch 31 , 1320, 1979.Google Scholar
  148. 148.
    Duffy, T. S.; Wang, Y. In Ultrahigh-pressure Mineralogy , Vol. 37; Hemley, R. J., Ed.; Min-eralogical Society of America: Washington, DC, 1998.Google Scholar
  149. 149.
    Flores, J. J.; Chronister, E. L. J. Raman Spectroscop. 27 , 149, 1996.Google Scholar
  150. 150.
    Marsh, S. (Editor) LASL Shock Hugoniot Data , Los Alamos National Laboratory, 1980.Google Scholar
  151. 151.
    J. Fritz; Upublished results , Los Alamos National Laboratory.Google Scholar
  152. 152.
    Wunderlich, B. J. Chem. Phys. 37 , 1207, 1962.Google Scholar
  153. 153.
    Shaner, J. W. J. Chem. Phys. 89 , 1616–1624, 1988.Google Scholar
  154. 154.
    Cummins, H. Z.; Schoen, P. E. In Laser Handbook ; Arechhi, F. T., Schulz-Dubois, E. O., Eds.; North-Holland: Amsterdam, 1972.Google Scholar
  155. 155.
    Fabelinskii, I. L. Molecular Scattering of Light ; Plenum Press: New York, 1968.Google Scholar
  156. 156.
    Krüger, J. K. Optical Techniques to Characterize Polymer Systems ; Elsevier: New York, 1989.Google Scholar
  157. 157.
    Kruger, J. K.; Marx, A.; Peetz, L.; Roberts, R.; Unruh, H.-G. Colloid Polymer Sci 264 , 1986.Google Scholar
  158. 158.
    Whitfield, C. H.; Brody, E. M.; Bassett, W. A. Rev. Sci. Instrum. 47 , 1976.Google Scholar
  159. 159.
    Koski, K. J.; Müller, J.; Hochheimer, H. D.; Yarger, J. L. Rev. Sci. Instrum. 73 , 2002.Google Scholar
  160. 160.
    Dye, R. C.; Sartwell, J.; Eckhardt, C. J. Rev. Sci. Instrum. 60 , 1989.Google Scholar
  161. 161.
    Stevens, L. L.; Orler, E. B.; Dattelbaum, D. M.; Ahart, M.; Hemley, R. J. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 2007, accepted.Google Scholar
  162. 162.
    Patterson, G. D. J. of Polym. Sci: Polym. Phys. Ed. 14 , 1976.Google Scholar
  163. 163.
    Middaugh, R. A.; Goudey, C. A. Oceans 93 Proceedings vols 1–3: engineering in harmony with the ocean , A149–A154, 1993.Google Scholar
  164. 164.
    McCluskey, M., Personal communication, 15th American Physical Society Topical Conference on Shock Compression of Condensed Matter, Fairmont Orchid, Hawai'i, July 2007.Google Scholar
  165. 165.
    Mao, H. K., Personal communication, Bethesda, MD, June 2007.Google Scholar
  166. 166.
    Carter, W. J.; Marsh, S. P. Los Alamos National Laboratory Report LA-13006-MS, 1995.Google Scholar
  167. 167.
    Sheffield, S. A.; Bloomquist, D. D. Bull. Am. Phys. Soc. 26 , 660–661, 1981.Google Scholar
  168. 168.
    Barker, L. M. Am. Phys. Soc. Topic. Group Shock Compress. Condens. Mat., Snowbird, UT, 505, 11–17, 1999.Google Scholar
  169. 169.
    Barker, L. M. Exp. Mech. 12 , 209, 1972.Google Scholar
  170. 170.
    Barker, L. M.; Hollenbach, R. E. Rev. Sci. Instrum. 36 , 1617, 1965.Google Scholar
  171. 171.
    Barker, L. M.; Hollenbach, R. E. J. Appl. Phys. 43 , 4669, 1972.Google Scholar
  172. 172.
    Bloomquist, D. D.; Sheffield, S. A. J. Appl. Phys. 54 , 1717–1722, 1983.Google Scholar
  173. 173.
    Jensen, B. J.; Holtkamp, D. B.; Rigg, P. A.; Dolan, D. H. J. Appl. Phys. 101 , 13523-1-10, 2007.Google Scholar
  174. 174.
    Mercier, P.; Benier, J.; Azzolina, A.; Lagrange, J. M.; Partouche, D. J. Phys. IV134 , 805–812, 2006.Google Scholar
  175. 175.
    Strand, O. T. et al. SPIE Proceedings, 2005, p 593.Google Scholar
  176. 176.
    Johnson, J. N.; Dick, J. J.; Hixson , R. S. J. Appl. Phys. 84 , 2520, 1998.Google Scholar
  177. 177.
    Bourne, N. K.; Gray, G. T. J. Appl. Phys. 98 , 123503, 2005.Google Scholar
  178. 178.
    Morris, C. E.; Fritz, J. N.; McQueen, R. G. J. Chem. Phys. 80 , 5203, 1984.Google Scholar
  179. 179.
    Kalashnikov, N. G.; Kuleshova, L. V.; Pavlovshii, M. N. Zh. Prikl. Mekhan. Tekh. Fiz. 187, 1972.Google Scholar
  180. 180.
    Champion, A. R. J. Appl. Phys. 42 , 5546, 1971.Google Scholar
  181. 181.
    Robbins, D. L.; Sheffield, S. A.; Alcon, R. R. Proceedings of the 13th American Physical Society Topical Conference on Shock Compression of Condensed Matter, Portland, Oregon, July 2003, Vol. 706, p. 675.Google Scholar
  182. 182.
    Weir, C. E. J. Res. Nat. Bur. Stand. 50 , 95, 1953.Google Scholar
  183. 183.
    Rabolt, J. F.; Piermarini, G.; Block, S. J. Chem. Phys. 69 , 2872, 1978.Google Scholar
  184. 184.
    Wu, C.-K.; Nicol, M. Chem. Phys. Lett. 21 , 153, 1973.Google Scholar
  185. 185.
    Rae, P. J.; Dattelbaum, D. M. Po l y m er 45 , 7615, 2004.Google Scholar
  186. 186.
    Nagao, H.; Matsuda, A.; Nakamura, K. G.; Kondo, K. Appl. Phys. Lett. 83 , 249, 2003.Google Scholar
  187. 187.
    Bourne, N. K.; Gray, G. T. J. Appl. Phys. 93 , 8966, 2003.Google Scholar
  188. 188.
    Sheffield, S. A.; Gustavsen, R. L.; Alcon, R. R. Proceedings of the American Physical Society Topical Conference on Shock Compression of Condensed Matter, 2000, Vol. 505, p. 1043.Google Scholar
  189. 189.
    Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.; Neel, K.; Thadani, N. in preparation .Google Scholar
  190. 190.
    Millet, J. C. F.; Bourne, N. K.; Gray, G. T. J. Appl. Phys. 96 , 5500, 2004.Google Scholar
  191. 191.
    Wackerle, J.; Johnson, J. O.; Halleck, P. M. Projectile Velocity Measurements and Quartz-and Manganin-Gauge Pressure Determinations in Gas Gun Experiments, Los Alamos National Laboratory, LA-5844, 1975.Google Scholar
  192. 192.
    Anderson, M. U. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1991, p. 875.Google Scholar
  193. 193.
    Sheffield, S. A.; Alcon, R. R. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1991, p. 909.Google Scholar
  194. 194.
    Weinberg, M., Master Thesis, New Mexico Institute of Mining and Technology, 2006.Google Scholar
  195. 195.
    Gupta, S. C.; Gupta, Y. M. High Press. Res. 19 , 785, 1992.Google Scholar
  196. 196.
    Hall, C. A. Phys. Plasmas 7 , 2000.Google Scholar
  197. 197.
    Reisman, D. B.; Toor, A.; Cauble, R. C.; Hall, C. A.; Asay, J. R.; Knudson, M. D.; Furnish, M. D. J. Appl. Phys. 89 , 2001.Google Scholar
  198. 198.
    Hall, C. A.; Asay, J. R.; Knudson, M. D.; Stygar, W. A.; Spielman, R. B.; Pointon, T. D.; Reisman, D. B.; Toor, A.; Cauble, R. C. Rev. Sci. Instrum. 72 , 2001.Google Scholar
  199. 199.
    Duvall, G. E.; Fowles, G. R. In High Pressure Physics and Chemistry , Vol. II; Bradley, R. S., Ed.; Academic Press: New York, 1963.Google Scholar
  200. 200.
    Aidun, J. B.; Gupta, Y. M. J. Appl. Phys. 69 , 1991.Google Scholar
  201. 201.
    Sandia Z-pinch Machine, Sandia National Laboratory.Google Scholar
  202. 202.
    Hall, C. A.; Baer, M. R.; Gustavsen, R. L.; Hooks, D. E.; Orler, E. B.; Dattelbaum, D. M.; Sheffield, S. A.; Sutherland, G. T. AIP Conf. Proc. 845 , 1311–1314, 2006.Google Scholar
  203. 203.
    Gustavsen, R. L.; Dattelbaum, D. M.; Orler, E. B.; Hooks, D. E.; Alcon, R. R.; Sheffield, S. A.; Hall, C. E.; Baer, M. R. American Physical Society Conference on Shock Compression of Condensed Matter, 2005, 845, pp. 149–152.Google Scholar
  204. 204.
    Baer, M.; Hall, C.; Hobbs, M.; Gustavsen, R.; Hooks, D.; Dattelbaum, D.; Sheffield, S. American Physical Society Conference on Shock Compression of Condensed Matter, 2007, in press.Google Scholar
  205. 205.
    Baer, M. R.; Hall, C. A.; Gustavsen, R. L.; Hooks, D. E.; Sheffield, S. A. J. Appl. Phys. 101 , 034906, 2007.Google Scholar
  206. 206.
    Sutherland, G. T.; unpublished results.Google Scholar
  207. 207.
    Kober, E. M.; Menikoff, R. American Physical Society Topical Conference on Shock Compression of Condensed Matter,Snowbird, UT, 1999, 505, p. 21.Google Scholar
  208. 208.
    Higuchi, H.; Jamieson, A. M.; Simha, R. J. Polym . Sci . Part B : Polym. Phys . 34 , 1423, 1996.Google Scholar
  209. 209.
    Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 77 , 3701, 1955.Google Scholar
  210. 210.
    Doolittle, A. K. J. Appl. Phys. 22 , 1471, 1951.Google Scholar
  211. 211.
    Fox, T. G.; Flory, P. J. J. Am. Chem. Soc. 70 , 2384, 1948.Google Scholar
  212. 212.
    Fox, T. G.; Flory, P. J. J. Appl. Phys. 21 , 581, 1950.Google Scholar
  213. 213.
    Fox, T. G.; Flory, P. J. J. Phys. Chem. 55 , 221, 1951.Google Scholar
  214. 214.
    Fox, T. G.; Flory, P. J. J. Polym. Sci. 14 , 315, 1954.Google Scholar
  215. 215.
    Fox, T. G.; Flory, P. J. J. Appl. Phys. 21 , 5, 1950.Google Scholar
  216. 216.
    Simha, R.; Boyer, R. F. J. Chem. Phys. 37 , 1003, 1962.Google Scholar
  217. 217.
    Hagiwara, K.; Ougizawa, T.; Inoue, T.; Hirata, K.; Kobayashi, Y. Rad. Phys. Chem. 58 , 525, 2000.Google Scholar
  218. 218.
    Bondi, A. J. Phys. Chem. 68 , 441, 1964.Google Scholar
  219. 219.
    Simha, R.; Carri, G. J. Polym . Sci . Part B : Polym. Phys . 32 , 2645, 1994.Google Scholar
  220. 220.
    Dow Corning, “Sylgard 184 Silicone Elastomer”product information sheet.Google Scholar
  221. 221.
    Menikoff, R.; Kober, E. M.; Dattelbaum, D. M. Unpublished results ; 2005.Google Scholar
  222. 222.
    Jean, Y.; Dattelbaum, D. M. unpublished results .Google Scholar
  223. 223.
    Morris, C. E.; Loughran, E. D.; Mortensen, G. F.; Gray, G. T. I.; Shaw, M. S. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1989.Google Scholar
  224. 224.
    Sander, R. K.; Sheffield, S. A.; Blais, N.; Engelke, R.; Dattelbaum, D. M.; McInroy, R. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 2005, Vol. 845, p. 1165.Google Scholar
  225. 225.
    Graham, R. A.; Richards, P. M.; Shrouf, R. D. J. Chem. Phys. 72 , 3421, 1980.Google Scholar
  226. 226.
    Eichelberger, R. J.; Hauver, G. E., 1962 p. 363.Google Scholar
  227. 227.
    Hauver, G. E. J. Appl. Phys. 36 , 2113, 1965.Google Scholar
  228. 228.
    de Icaza Herrera, M.; Migault, A.; Jacquesson, J. C. R. Acad. Sci. Paris 284 , 503, 1977.Google Scholar
  229. 229.
    de Icaza Herrera, M.; Migault, A.; Jacquesson, J. C. R. Acad. Sci. Paris 284 , 531, 1977.Google Scholar
  230. 230.
    Novitskii, E. Z.; Ivanov, A. G.; Khokhlov, N. P. Third All-Union Symposium on Combustion and Explosion, Nauka, Moscow, 1971, p. 579.Google Scholar
  231. 231.
    de Icaza Herrera, M.; Migault, A.; Jacquesson, J. In High Pressure Science and Technology ; Timmerhaus, K. D., Barber, M. S., Eds.; Plenum Press: New York, 1979.Google Scholar
  232. 232.
    Graham, R. A. J. Phys. Chem. 83 , 3048, 1979.Google Scholar
  233. 233.
    Brish, A. A. Soviet Physics JETP 11 , 15, 1960.Google Scholar
  234. 234.
    Graham, R. A. VIIth International AIRAPT Conference, Le Creusot, France, 1979, p. 1032–1039.Google Scholar
  235. 235.
    Champion, A. R. J. Appl. Phys. 43 , 2216, 1972.Google Scholar
  236. 236.
    236.Kuleshova, L. V. Sov. Phys. Solid State 11 , 886, 1969.Google Scholar
  237. 237.
    Hauver, G. E. 5th Symposium (International) on Detonation, 1970, p. 387.Google Scholar
  238. 238.
    238.Lovinger, A. J. Jpn. J. Appl. Phys. 24 , 18, 1985.Google Scholar
  239. 239.
    Bauer, F.; Graham, R. A.; Lee, L. M. ISAF 92, 1992, pp. 273–276.Google Scholar
  240. 240.
    Bauer, F.; Graham, R. A.; Lee, L. M. ISAF 90, 1990, pp. 288–291.Google Scholar
  241. 241.
    Bauer, F. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1983 p. 225.Google Scholar
  242. 242.
    242.Bauer, F. Ferroelectrics 49 , 231, 1983.Google Scholar
  243. 243.
    243.Sheffield, S. A.; Dattelbaum, D. M.; Robbins, D. L.; Alcon, R. R.; Gustavsen, R. L. Proceedings of the American Physical Society Topical Conference on Shock Compression of Condensed Matter, 2005, Vol. 845, p. 921.Google Scholar
  244. 244.
    Johnson, J. N. APS/AIRAPT Conference, 1993.Google Scholar
  245. 245.
    245.Smith, J. H. ASTM Tech. Pub. 336 , 264, 1963.Google Scholar
  246. 246.
    Staudhammer, K. P.; Johnson, K. A. International Symposium on Intense Dynamic Loading and its Effects , 1986.Google Scholar
  247. 247.
    247.Chang, S. N.; Chung, D. T.; Li, Y. F.; Nemat-Nasser, S. J. Appl. Mech. Trans. ASME 59 , 305, 1992.Google Scholar
  248. 248.
    Chang, S. N.; Chung, D. T.; Ravichandran, G.; Nemat-Nassar, S. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1989, p. 389.Google Scholar
  249. 249.
    249.Kumar, P.; Clifton, R. J. J. Appl. Phys. 48 , 4850, 1977.Google Scholar
  250. 250.
    Gray, G. T. American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1989.Google Scholar
  251. 251.
    Gray, G. T. The Materials Society Symposium on Modeling the Deformation of Crystalline Solids, 1991.Google Scholar
  252. 252.
    Bourne, N. K.; Gray, G. T. Proc. R. Soc. 2005.Google Scholar
  253. 253.
    Clifton, R. J.; Raiser, G.; Ortiz, M.; Espinosa, H. American Physical Society Topical Conference on Shock Compression of Condensed Matter — 1989, 1990, p. 437–440.Google Scholar
  254. 254.
    Gray, G. T. In High-Pressure Shock Compression of Solides ; Asay, J. R., Shahinpoor, M., Eds.; Springer: Berlin, 1993.Google Scholar
  255. 255.
    Gray, G. T. In ASM Handbook Vol. 8: Mechanical Testing and Evaluation ; Kuhn, H., Medlin, D., Eds.; ASM International Materials Park, OH, 2000.Google Scholar
  256. 256.
    Gray, G. T.; Follansbee, P. S.; Frantz, C. E. Mater. Sci. Eng. A. 111 , 9, 1989.Google Scholar
  257. 257.
    Koller, D. D.; Hixson, R. S.; Gray, G. T.; Rigg, P. A.; Addessio L. B.; Cerreta, E. K.; Maestas, J. D.; Yablinksy, C. A. J. Appl. Phys . 98 , 103518, 2005.Google Scholar
  258. 258.
    Bourne, N. K.; Gray, G. T. J. Phys. D.: Appl. Phys. 38 , 3690, 2005.Google Scholar
  259. 259.
    Millett, J. C. F.; Bourne, N. K.; Akhavan, J. J. Appl. Phys. 95 , 4722, 2004.Google Scholar
  260. 260.
    Brown, E. N.; Trujillo, C. P.; Gray, G. T.; Rae, P. J.; Bourne, N. K. J. Appl. Phys. , 101 , 024916, 2007.Google Scholar
  261. 261.
    Antoun, T.; Seaman, L.; Curran, D. R.; Kanel, G. I.; Razorenov, S. V.; Utkin, A. V. Spall Fracture ; Springer: New York, 2003.Google Scholar
  262. 262.
    Johnson, J. N.; Dick, J. J. American Physical Society Topical Congerence on Shock Compression of Condensed Matter — 1999, 2000, p. 543.Google Scholar
  263. 263.
    “Basic Research Needs for Materials under Extreme Environments,” Report of the Basic Energy Sciences Workshop on Materials under Extreme Environments, June 11–13, 2007, Department of Energy, Office of Science, Bethesda, MD.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dana M. Dattelbaum
    • 1
  • Lewis L. Stevens
  1. 1.Dynamic and Energetic Materials DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations