Advertisement

Equations of State and High-Pressure Phases of Explosives

  • Suhithi M. Peiris
  • Jared C. Gump
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

The singular character of energetic molecules is that they are very easily initiated, even just by friction caused when twisting of the container cap to open the container. That is, these materials are so sensitive to perturbation that their reaction or decomposition is easily started. This certainly implies that the molecule is inherently unstable or strained at ambient pressure and temperature, or that its heat of formation is very low in comparison to the formation of other phases or products from the same chemical composition. In the case of high explosives, positive values for the heat of formation is not unknown, perhaps explaining the multiple meta-stable crystalline structures or polymorphs discovered at ambient pressure and temperature. Consequently, the phase diagrams of HEs and their high pressure, high-temperature phase transitions are often very complex.

Keywords

Bulk Modulus Ambient Pressure Unit Cell Volume Pressure Medium Ammonium Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Murnaghan (1937) “Finite Deformations of an elastic solid”, American Journal of Mathematics 59, 235–260; F. Birch (1947) “Finite Elastic Strain of Cubic Crystals”, Phys. Rev. 71, 809–824.CrossRefGoogle Scholar
  2. 2.
    F. Birch (1978) “Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K”, J. Geophys. Res. 83, 1257–1268.CrossRefGoogle Scholar
  3. 3.
    P. Vinet, J. Ferrante, J. H. Rose, J. R. Smith (1987) “Compressibility of Solids”, J. Geophys. Res. 92, 9319–9325.CrossRefGoogle Scholar
  4. 4.
    Raymond Jeanloz (1988) “Universal equation of state”, Phys. Rev. B 38, 805–807.CrossRefGoogle Scholar
  5. 5.
    S. M. Caulder, M. L. Buess, A. N. Garroway, P. J. Miller (2004) “NQR Line Broadening Due to Crystal Lattice Imperfections and its Relationship to Shock Sensitivity”, Proceedings of the APS Topical Group on Shock Compression of Condensed Matter Conference, 2003, Editors M. D. Furnish, Y. M. Gupta, J. W. Forbes, American Institute of Physics, Melville, NY, pp. 929–933.Google Scholar
  6. 6.
    D. S. Watt, R.M. Doherty (2004) “Reduced Sensitivity RDX - Where are we?”, 35th Annual Conference of ICT, Karlsruhe, Germany.Google Scholar
  7. 7.
    G. J. Peirmarini, S. Block, J. D. Barnett, R. A. Forman (1975) “Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar” J. of Appl. Phys. 46 2774–2780.CrossRefGoogle Scholar
  8. 8.
    H. K. Mao, J. Xu, P. M. Bell (1986) “Calibration of the ruby pressure scale to 800 kbar under quasi-hydrostatic conditions”, J. Geophys. Res. 91, 4673–4676.CrossRefGoogle Scholar
  9. 9.
    G. J. Piermarini, S. Block, J. D. Barnett (1973) “Hydrostatic limits in liquids and solids to 100 kbar”, J. Appl. Phys. 44, 5377–5382.CrossRefGoogle Scholar
  10. 10.
    W. A. Bassett, A. H. Shen, M. Bucknum, and I.-M. Chou (1993) “A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from −190° to 1200°C”, Rev. of Sci. Instrum. 64, 2340–2345.CrossRefGoogle Scholar
  11. 11.
    B. Olinger, B. Roof, H. Cady (1978) Actes du Symposium International sur le Comportement des Milieux Denses sous Hautes Pressions Dynamiques, Paris, France, pp. 3–8.Google Scholar
  12. 12.
    Choong-Shik Yoo, Hyunchae Cynn W. Michael Howard, Neil Holmes (2000) “Equations of State of Unreacted High Explosives at High Pressures”, Proceedings of the Eleventh International Detonation Symposium, 1998, Snomass, CO, Office of Naval Research, pp. 951–957.Google Scholar
  13. 13.
    C.-S. Yoo, H. Cynn (1999) “Equation of state, phase transition, decomposition of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures”, J. Chem. Phys. 111, 10229–10235.CrossRefGoogle Scholar
  14. 14.
    R. M.nikoff, Thomas D. Sewell (2001) “Fitting Forms for Isothermal Data”, High Pressure Research 21, 121–137.CrossRefGoogle Scholar
  15. 15.
    Jared C. Gump, Suhithi M. Peiris (2005) “Isothermal equations of state of beta octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine at high temperatures”, J. Appl. Phys. 97, 53513–53520.CrossRefGoogle Scholar
  16. 16.
    P. W. Bridgeman (1926) “The effect of pressure on forty-three pure liquids”, Proc. Am. Acad. Arts Sci. 61, 57–99; P. W. Bridgeman (1942) “Freezing parameters and compression of twenty-one substances to 50,000 kgcm2”, Proc. Am. Acad. Arts Sci. 74, 399–424.Google Scholar
  17. 17.
    M. Hermann, W. Engel, N. Eisenreich (1992) “Thermal expansion, transitions, sensitivities and burning rates of HMX”, Propel. Explosiv. Pyrotech. 17, 190–195.CrossRefGoogle Scholar
  18. 18.
    Cheng K. Saw (2005) “Kinetics of HMX and Phase Transitions: Effects of Particle Size at Elevated Temperature”, Proceedings of the Twelfth International Detonation Symposium, 2002, San Diego, CA, Published by Office of Naval Research, pp. 70–76.Google Scholar
  19. 19.
    B. Olinger, H. H. Cady (1976) “The Hydrostatic Compression of Explosives and Detonation Products to 10 GPa (100 Kbars) and their Calculated Shock Compression: Results for PETN, TATB, CO2, and H2O”, Proceedings of the Sixth International Detonation Symposium, 1976, Naval Surface Weapons Center, White Oak, MD, pp. 700–709.Google Scholar
  20. 20.
    Lewis L. Stevens, Nenad Velisavljevic, Daniel E. Hooks, Dana M. Dattelbaum (2008) “Hydrostatic compression curve for triamino-trinitrobenzene (TATB) determined to 13.0 GPa with powder X-ray diffraction”, Propel. Explosiv. Pyrotech. (submitted).Google Scholar
  21. 21.
    B. Olinger, P. M. Halleck, H. H. Cady (1975) “The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression”, J. Chem. Phy. 62, 4480–4483.CrossRefGoogle Scholar
  22. 22.
    A. D. Booth, S. J. Llewellyn (1947) “The crystal structure of pentaerythritol tetranitrate” J. Chem. Soc. 1947, 837–846.CrossRefGoogle Scholar
  23. 23.
    H. H. Cady, A. C. Larson (1975) “Pentaerythritol tetranitrate II - its crystal-structure and transformation to petn I - an algorithm for refinement of crystal-structures with poor data”, Acta Crystallogr. B31, 1864–1869.Google Scholar
  24. 24.
    Y. A. Gruzdkov, Z. A. Dreger, Y. M. Gupta (2004) “Experimental and Theoretical Study of Pentaerythritol Tetranitrate Conformers”, J. Phys. Chem. A 108, 6216–6221.CrossRefGoogle Scholar
  25. 25.
    M. Pravica, et al. (2006) “Studies of phase transitions in PETN at high pressure” J. Phyc. Chem. Solids 67, 2159–2163.CrossRefGoogle Scholar
  26. 26.
    O. Tschauner, B. Kiefer, Y. Lee, M. Pravica, M. Nicol, E. Kim (2007) “Structural transition of PETN-I to a ferroelastic orthorhombic phase PETN-III at elevated pressures”, J. Chem. Phys. 127, 094502.CrossRefGoogle Scholar
  27. 27.
    P. W. Bridgeman (1937) “Polymorphic transitions of 35 substance to 50,000 kg cm2”, Proc. Am. Acad. Arts Sci. 72, 45–130.Google Scholar
  28. 28.
    F. W. Sandstrom, P.-A. Persson, B. Olinger (1995) “Isothermal and Shock Compression of High Density Ammonium Nitrate and Ammonium Perchlorate”, Proceedings of the Tenth International Detonation Symposium, 1993, Boston, MA, pp. 766–774.Google Scholar
  29. 29.
    Suhithi M. Peiris, G. I. Pangilinan, and T. P. Russell (2000) “Structural Properties of Ammonium Perchlorate Compressed to 5.6 GPa”, J. Phys. Chem. A, 104, 11188–11193.CrossRefGoogle Scholar
  30. 30.
    Jared C. Gump, Suhithi M. Peiris (2007) “Phase Stability of Epsilon HNIW (CL-20) at High-Pressure and Temperature”, Proceedings of the Thirteenth International Detonation Symposium, 2006, Norfolk, VA, pp. 1045–1050.Google Scholar
  31. 31.
    T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block (1992) “High-Pressure Phase Transition in γ-Hexanitrohexaazaisowurtzitane”, J. Phys. Chem. 96, 5509–5512.CrossRefGoogle Scholar
  32. 32.
    Richard J. Karpowicz, Thomas B. Brill (1984) “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-S-triazine in the vapor, solution, and solid-phases”, J. Phys. Chem. 88, 348–352.CrossRefGoogle Scholar
  33. 33.
    P. J. Miller, S. Block, G. J. Piermarini (1991) “Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behaviour of RDX”, Combustion Flame 83, 174–184.CrossRefGoogle Scholar
  34. 34.
    Naoyuki Goto et al. (2007) “High Pressure Phase of RDX”, Proceedings of the Thirteenth International Detonation Symposium, 2006, Norfolk, VA, pp. 1051–1057.Google Scholar
  35. 35.
    Zbigniew A. Dreger, Yogendra M. Gupta (2007) “High Pressure Raman Spectroscopy of Single Crystals of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)”, J. Phys. Chem. B 111, 3893–3903.CrossRefGoogle Scholar
  36. 36.
    J. A. Ciezak, T. A. Jenkins, Z. Liu, R. J. Hemley (2007) “High-Pressure Vibrational Spectroscopy of Energetic Materials: Hexahydro-1,3,5-trinitro-1,3,5-triazine”, J. Phys. Chem. A 111, 59–63.CrossRefGoogle Scholar
  37. 37.
    D. E. Hare, J. W. Forbes, D. B. Reisman, J. J. Dick (2004) “Isentropic compression loading of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa”, Appl. Phys. Lett. 85, 949–951.CrossRefGoogle Scholar
  38. 38.
    H. H. Cady (1961) “Studies of the polymorphs of HMX”, Report LAMS-2652, Los Alamos National Laboratory, 1962, Los Alamos, NM, pp. 1–50.Google Scholar
  39. 39.
    A. G. Landers, T. B. Brill (1980) “Pressure-temperature dependence of the β—δ polymorph interconversion in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine”, J. Phys. Chem 84, 3573– 3577.CrossRefGoogle Scholar
  40. 40.
    Gasper J. Piermarini, Stanley Block, Philip J. Miller (1987) “Effects of pressure and temperature on the thermal decomposition rate and reaction mechanism of β— octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine”,J. Phys. Chem. 91, 3872–3878.CrossRefGoogle Scholar
  41. 41.
    J. J. Dick, R. B. von Dreele (1998) Proceedings of the APS Topical Group on Shock Compression of Condensed Matter Conference, 1997, Editors S. C. Schmidt, D. P. Dandekar, J. W. Forbes, American Institute of Physics, Woodbury, NY, pp. 827–830.Google Scholar
  42. 42.
    P. W. Richter, C. W. F. T. Pistorius (1971) “Phase relations of NH4ClO4 and NH4BF4 to High Pressures”, J. Solid State Chem. 3, 343–439.Google Scholar
  43. 43.
    M. Frances Foltz, Jon L. Maienschein (1995) “Ammonium perchlorate phase transitions to 26 GPa and 700 K in a diamond anvil cell”, Mater. Lett. 24, 407–414.CrossRefGoogle Scholar
  44. 44.
    T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block (1993) “Pressure/Temperature Phase Diagram of Hexanitrohexaazaisowurtzitane”, J. Phys. Chem. 97, 1993–1997.CrossRefGoogle Scholar
  45. 45.
    R. Y. Yee, M. P. Nadler, A. T. Neilson (1990) Proceedings of the October 1990 JANNAF Propulsion Meeting, CPIA.Google Scholar
  46. 46.
    M. F. Foltz, C. L. Coon, F. Garcia, A. L. Nichols (1994) “The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part I”, Propel. Explosiv. Pyrotech. 19, 19–25; “The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part II”, Propel. Explosiv. Pyrotech. 19, 133–144.CrossRefGoogle Scholar
  47. 47.
    A. J. Davidson et al. (2008) “Explosives under pressure - the crystal structure of γ-RDX as determined by high-pressure X-ray and neutron diffraction”, Cryst Eng Comm, 10, 162–165.Google Scholar
  48. 48.
    A. J. Davidson et al. (2007) “High-Pressure Structural Studies of Energetic Ammonium Compounds” Proceedings of the 38th ICT conference, 2007, Karlsruhe, Germany pp 41:1–12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Suhithi M. Peiris
    • Jared C. Gump
      • 1
    1. 1.Indian Head DivisionNaval Surface Warfare CenterIndian HeadUSA

    Personalised recommendations