Synthesis of High-Nitrogen Energetic Material

  • Mikhail I. Eremets
  • Ivan A. Trojan
  • Alexander G. Gavriliuk
  • Sergey A. Medvedev
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Pure nitrogen can be considered as a material with optimized storage of chemical energy because of the huge difference in energy between triply bonded di-nitrogen and singly bonded nitrogen. N ≡ N bond is one of the strongest chemical bonds known, containing 4.94eV atom−1 while the N-N bond is much weaker with −0.83eV atom−1 [1]. Therefore when transforming from singly bonded nitrogen to diatomic triply bonded molecular nitrogen, a large amount of energy should be released: about 2.3eV atom−1. Or, in other words, this chemical energy can be ideally stored by transforming a triple bond into three single bonds. Thus, nitrogen may form a high-energy density material with energy content higher than that of any known nonnuclear material. The greatest utility of fully single-bonded nitrogen would be as high explosives. Here, a tenfold improvement in detonation pressure over HMX (one the more powerful high explosives) seems possible [2].

A chemical approach for synthesis of nitrogen-energetic materials is creating large all-nitrogen molecules or clusters bound by single (N-N) or single and double (N≡ N) bonds. Calculations predict different polynitrogen molecules or clusters [3] such as, for instance, N4,N8,N20, or even nitrogen fullerene N60 (see for review Refs [3–5]) with high-energy-storage capacity. However, none of them has yet been synthesized with exception of N4(TdN4) [6], albeit with a very short lifetime of ̃1)μs [6]. Synthesis of compounds having several nitrogen atoms consecutively is difficult because the single bond in nitrogen is relatively weak. It has been achieved only in compounds with other atoms. For instance, HN3 and other azides with linear-N3 radical have been synthesized by Curtius in 1890 [7]. Only recently N5 + was synthesized by Christe and coworkers [8]. On the basis of the N3 and N5 + species nearly all nitrogen compounds were synthesized by attaching these radicals to a central atom of Te, B, and P such as N5P(N3)6, N5B(N3)4, Te(N3)4, and others (see for review Refs [2,9–11]).


Raman Spectrum Boron Nitride Superhard Material Laser Heating Molecular Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huheey, J. E., Keiter, E. A. & Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity (Harper Collins, New York, 1993).Google Scholar
  2. 2.
    Christe, K. O. Recent Advances in the Chemistry of N+5 , N 5 and High-Oxygen Compounds. Propel, Explosiv. Pyrotech. 32, 194–204 (2007).CrossRefGoogle Scholar
  3. 3.
    Samartzis, P. C. & Wodtke, A. M. All-nitrogen chemistry: how far are we from N60? Int. Rev. Phys. Chem. 25 527–552 (2006).CrossRefGoogle Scholar
  4. 4.
    Rice, B. M., Byrd, E. F. C. & Mattson, W. D. Computational aspects of nitrogen-rich HEM. High Ener Density Mater. Struct. Bond. 125, 153–194 (2007).CrossRefGoogle Scholar
  5. 5.
    Barlett, R. J. Exploading the mysteries of nitrogen. Chemi. Indus. 140–143 (2000).Google Scholar
  6. 6.
    Cacase, F., Petris, G. d. & Troiani, A. Experimental detection of tetranitrogen. Science 295, 480–481 (2002).CrossRefGoogle Scholar
  7. 7.
    Curtius, T. Berichte. Deutsch. Chem. Gesellschaft 23, 3023–3033 (1890).CrossRefGoogle Scholar
  8. 8.
    Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N+5 : A novel homolepic polynitro-gen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2002–2009 (1999).CrossRefGoogle Scholar
  9. 9.
    Klapotke, T. M. in High Energy Density Materials(ed. Klapotke, T. M.), pp. 85–121 (Springer, Heidelberg, 2007).CrossRefGoogle Scholar
  10. 10.
    Knapp, C. & Passmore, J. On the Way to “Solid Nitrogen” at Normal Temperature and Pressure? Binary Azides of Heavier Group 15 and 16 elements. Angew. Chem. Int. Ed. 43, 2–4 (2004).CrossRefGoogle Scholar
  11. 11.
    Glukhovtsev, M. N., Jiao, H. & Schleyer, P. v. R. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg. Chem. 35, 7124–7133 (1996).CrossRefGoogle Scholar
  12. 12.
    McMahan, A. K. & LeSar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).CrossRefGoogle Scholar
  13. 13.
    Martin, R. M. & Needs, R. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys. Rev. B 34, 5082–5092 (1986).Google Scholar
  14. 14.
    Eremets, M. I., Hemley, R. J., Mao, H. K. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low pressure stability. Nature 411, 170–174 (2001).CrossRefGoogle Scholar
  15. 15.
    Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hhemley, R. J. Optical evidence for nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–65 (2000).CrossRefGoogle Scholar
  16. 16.
    Nordlund, K., Krasheninnikov, A., Juslin, N., Nord, J. & Albe, K. Structure and stability of non-molecular nitrogen at ambient pressure. Europ. Lett. 65, 400–406 (2004).CrossRefGoogle Scholar
  17. 17.
    Mattson, W. D. PhD thesis (University of Illinois at Urbana-Champaign, 2003).Google Scholar
  18. 18.
    Mailhiot, C., Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B 46, 14419– 14435 (1992).Google Scholar
  19. 19.
    Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nature Mater. 3, 558–563 (2004).CrossRefGoogle Scholar
  20. 20.
    Gregoryanz, E. et al. High P-T transformations of nitrogen to 170 GPa. J. Chem. Phys. 126, 184505 (2007).CrossRefGoogle Scholar
  21. 21.
    Lipp, M. J. et al. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Phys. Rev. B 76, 014113 (2007).Google Scholar
  22. 22.
    Trojan, I. A., Eremets, M. I., Medvedev, S. A., Gavriliuk, A. G. & Prakapenka, V. B. Transformation of molecular to polymeric nitrogen at high pressures and temperatures. In situ X-ray diffraction studies. Appl. Phys. Lett., to be published (2008).Google Scholar
  23. 23.
    Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys.124, 244704 (2006).CrossRefGoogle Scholar
  24. 24.
    Caracas, R. Raman spectra and lattice dynamics of cubic gauche nitrogen. J. Chem. Phys. 127, 144510 (2007).CrossRefGoogle Scholar
  25. 25.
    Mattson, W. D., Sanchez-Portal, D., Chiesa, S. & Martin, R. M. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501–125504 (2004).CrossRefGoogle Scholar
  26. 26.
    Zahariev, F., Hu, A., Hooper, J., Zhang, F. & Woo, T. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation. Phys. Rev. B 72, 214108 (2005).CrossRefGoogle Scholar
  27. 27.
    Yu, H. L. et al. First-principles calculations of the single-bonded cubic phase of nitrogen. Phys. Rev. B 73, 012101 (2006).CrossRefGoogle Scholar
  28. 28.
    Zahariev, F., Dudiy, S. V., Hooper, J., Zhang, F. & Woo, T. K. Systematic method to new phases of polymeric nitrogen under high-pressure. Phys. Rev. Lett. 97, 155503–1555034 (2006).CrossRefGoogle Scholar
  29. 29.
    Zhang, T., Zhang, S., Chen, Q. & Peng, L.-M. Metastability of single-bonded cubic-gauche structure of N under ambient pressure. Phys. Rev. B 73, 094105–094107 (2006).Google Scholar
  30. 30.
    Uddin, J., Barone, V. N. & Scuceria, G. E. Energy storage capacity of polymeric nitrogen. Molecul. Phys. 104, 745–749 (2006).CrossRefGoogle Scholar
  31. 31.
    Zahariev, F., Hooper, J., Alavi, S., Zhang, F. & Woo, T. K. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).Google Scholar
  32. 32.
    Mitas, L. & Martin, R. M. Quantum Monte Carlo of nitrogen: atom, dimer, atomic, and molecular solids. Phys. Rev. Lett. 72, 2438–2441 (1994).CrossRefGoogle Scholar
  33. 33.
    Lewis, S. P. & Cohen, M. L. High-pressure atomic phases of solid nitrogen. Phys. Rev. B 46, 11117–11120 (1992).Google Scholar
  34. 34.
    Eremets, M. I. et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618– 10618 (2004).CrossRefGoogle Scholar
  35. 35.
    Peiris, S. M. & Russell, T. P. Photolysis of Compressed Sodium Azide (NaN3) as a synthetic pathway to nitrogen materials. J. Phys. Chem. A 107, 944–947 (2003).Google Scholar
  36. 36.
    Hemley, R. J. Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).CrossRefGoogle Scholar
  37. 37.
    Alemany, M. M. G. & Martins, J. L. Density-functional study of nonmolecular phases of nitrogen: metastable phase at low pressure. Phys. Rev. B. 024110 68, 024110 (2003).CrossRefGoogle Scholar
  38. 38.
    Zhao, J. First-principles study of atomic nitrogen solid with cubic gauche structure. Phys. Lett. A 360, 645–648 (2007).CrossRefGoogle Scholar
  39. 39.
    Barbee, T. W. & III. Metastability of atomic phases of nitrogen. Phys. Rev. B 48, 9327–9330 (1993).CrossRefGoogle Scholar
  40. 40.
    Yakub, E. S. Diatomic fluids at high pressures and temperatures: a non-empirical approach. Physica B 265, 31–38 (1999).CrossRefGoogle Scholar
  41. 41.
    Caracas, R. & Hemley, R. J. New structures of dense nitrogen: pathways to the polymeric phase. Chem. Phys. Lett. 442, 65–70 (2007).CrossRefGoogle Scholar
  42. 42.
    Chen, X. Q., Fu, C. L. & Podloucky, R. Superhard Dense Nitrogen. Phys. Rev. B 77, 064103 (2008).CrossRefGoogle Scholar
  43. 43.
    Ross, M. & Rogers, F. Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen. Phys. Rev. B 74, 024103 (2006).CrossRefGoogle Scholar
  44. 44.
    Wang, X. L. et al. Prediction of a new layered phase of nitrogen from first-principles simulations. J. Phys.: Condens. Matter. 19, 425226–425229 (2007).CrossRefGoogle Scholar
  45. 45.
    Reichlin, R., Schiferl, D., Martin, S., Vanderborgh, C. & Mills, R. L. Optical studies of nitrogen to 130 GPa. Phys. Rev. Lett. 55, 1464–1467 (1985).CrossRefGoogle Scholar
  46. 46.
    Bell, P. M., Mao, H. K. & Hemley, R. J. Observations of solid H2 ,D2 ,N2 at pressures around 1.5 megabar at 25°C. Physica B 139140, 16–20 (1986).Google Scholar
  47. 47.
    Gregoryanz, E., Goncharov, A. F., Hemley, R. J. & Mao, H. K. High-pressure amorphous nitrogen. Phys. Rev. B 64, 052103 (2001).CrossRefGoogle Scholar
  48. 48.
    Gregoryanz, E. et al. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B 66, 224108–5 (2002).CrossRefGoogle Scholar
  49. 49.
    Eremets, M. I., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Superconductivity in boron. Science 293, 272–274 (2001).CrossRefGoogle Scholar
  50. 50.
    Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. in ESRF Highlights 2004 (ed. Admans, G.), pp. 37–38 (Imprimerie du Pont de Claix, Grenoble, 2005).Google Scholar
  51. 51.
    Sanz, D. N., Loubeyre, P. & Mezouar, M. Equation of state and pressure induced amorphiza-tion of β-boron from X-ray measurements up to 100 GPa. Phys. Rev. Lett. 89, 245501 (2002).CrossRefGoogle Scholar
  52. 52.
    Yoo, C. S., Akella, J., Cynn, H. & Nicol, M. Direct elementary reactions of boron and nitrogen at high pressures and temperatures. Phys. Rev. B 56, 140–146 (1997).CrossRefGoogle Scholar
  53. 53.
    Boehler, R., Bargen, N. v. & Chopelas, A. Melting, thermal expansion, and phase transitions of iron at high pressures. J. Geophys. Res. B 95, 21731–21736 (1990).CrossRefGoogle Scholar
  54. 54.
    Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).CrossRefGoogle Scholar
  55. 55.
    Eremets, M. I. Megabar high-pressure cells for Raman measurements. J. Raman Spectr. 34, 515–518 (2003).CrossRefGoogle Scholar
  56. 56.
    Eremets, M. I. High Pressures Experimental Methods(Oxford University Press, Oxford, 1996).Google Scholar
  57. 57.
    Knittle, E., Wentzcovitch, R. M., Jeanloz, R. & Cohen, M. L. Experimental and theoretical equation of state of cubic boron nitride. Nature 337, 349–352 (1989).CrossRefGoogle Scholar
  58. 58.
    Eremets, M. I., Gavriliuk, A. G. & Trojan, I. A. Single-crystalline polymeric nitrogen. Appl. Phys. Lett. 90, 171904 (2007).CrossRefGoogle Scholar
  59. 59.
    Manzhelii, V. G. & Freiman, Y. A. (eds.) Physics of Cryocrystals(American Institute of Physics, College Park, MD, 1997).Google Scholar
  60. 60.
    Bini, R., Ulivi, L., Kreutz, J. & Jodl, H. J. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy. J. Chem. Phys. 112, 8522–8529 (2000).CrossRefGoogle Scholar
  61. 61.
    Mills, R. L., Olinger, B. & Cromer, D. T. Structures and phase diagrams of N2 and CO to 13 GPa by x-ray diffraction. J. Chem. Phys. 84, 2837–2845 (1986).CrossRefGoogle Scholar
  62. 62.
    Olijnyk, H. High pressure x-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968–8972 (1990).CrossRefGoogle Scholar
  63. 63.
    Hanfland, M., Lorenzen, M., Wassilew-Reul, C. & Zontone, F. Structures of molecular nitrogen at high pressure. Rev. High Pressure Sci. Technol. 7, 787–789 (1998).Google Scholar
  64. 64.
    Goncharov, A. F., Gregoryanz, E., Mao, H.-K. & Hemley, R. J. Vibrational dynamics of solid molecular nitrogen to megabar pressures. Low Temper. Phys. 27, 866–869 (2001).CrossRefGoogle Scholar
  65. 65.
    Schiferl, D., Buchsbaum, S. & Mills, R. L. Phase transitions in nitrogen observed by Raman spectroscopy from 0.4 to 27.4 GPa at 15 K. J. Phys. Chem. 89, 2324–2330 (1985).CrossRefGoogle Scholar
  66. 66.
    LeSar, R. Improved electron-gas model calculations of solid N2 to 10 GPa. J. Chem. Phys. 81, 5104–5108 (1984).CrossRefGoogle Scholar
  67. 67.
    Jephcoat, A. P., Hemley, R. J., Mao, H. K. & Cox, D. E. Pressure-induced structural transitions in solid nitrogen. Bull. Am. Phys. Soc. 33, 522 (1988).Google Scholar
  68. 68.
    Gregoryanz, E. et al. On the epsilon-zeta transition of nitrogen. J. Chem. Phys. 124, 116102 (2006).CrossRefGoogle Scholar
  69. 69.
    M. I. Eremets et al. Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride. Phys. Rev. B 57, 5655–5660 (1998).CrossRefGoogle Scholar
  70. 70.
    Levitas, V. I., Henson, B. F., Smilowitz, L. B. & Asay, B. W. Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 92, 235702-1-4 (2004).CrossRefGoogle Scholar
  71. 71.
    Hanfland, M., Beister, H. & Syassen, K. Graphite under pressure: equation of state and first-order Raman modes. Phys. Rev. B 39, 12598–12603 (1989).CrossRefGoogle Scholar
  72. 72.
    Occelli, F., Loubeyre, P. & LeToullec, R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature Materials 2, 151–154 (2003).CrossRefGoogle Scholar
  73. 73.
    Furthmueller, J., Hafner, J. & Kresse, G. Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B 50, 15606–15622 (1994).CrossRefGoogle Scholar
  74. 74.
    Albe, K. Theoretical study of boron nitride modifications at hydrostatic pressures. Phys. Rev. B 55, 6203–6210 (1997).CrossRefGoogle Scholar
  75. 75.
    Fahy, S., Louie, S. G. & Cohen, M. L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34, 1191–1199 (1986).CrossRefGoogle Scholar
  76. 76.
    Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).CrossRefGoogle Scholar
  77. 77.
    Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mikhail I. Eremets
    • 1
  • Ivan A. Trojan
    • 1
  • Alexander G. Gavriliuk
    • 2
    • 3
  • Sergey A. Medvedev
    • 1
  1. 1.Max Planck Institute for ChemistryMainzGermany
  2. 2.Russian Academy of SciencesInstitute for High Pressure PhysicsTroitskRussia
  3. 3.Russian Academy of SciencesMoscowRussia

Personalised recommendations