Advertisement

Immune Responses to Indwelling Medical Devices

Chapter
  • 866 Downloads
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 3)

Abstract

Implanted medical devices have offered clinical hope to patients who either have critical illnesses or have more chronic problems such as joint destruction. No doubt, these devices have saved many lives and improved the quality of life of hundreds of thousands of people. Indeed, the use of indwelling devices has reached epic proportions in human medicine over the last three decades. One of the unintended consequences has been an accompanying rise in the infection rate in patients, which is directly related to the presence of these devices in humans. This is problematic because the devices are colonized by communities of microorganisms, termed biofilms, that are highly resistant to antimicrobial challenge and to destruction from the human host and its defenses. Over the past decade, there has been much progress on understanding how and why these communities are less susceptible to antimicrobial agents. However, many questions regarding the resistance of these communities to human host defenses are still unanswered. This chapter discusses the current knowledge of how the human immune system responds not only to the presence of indwelling medical devices, but also to the communities that colonize them.

Keywords

Cystic Fibrosis Pseudomonas Aeruginosa Antimicrobial Peptide Innate Immune System Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arciola CR, Cervellati M, Pirini V, Gamberini S, Montanaro L (2001) Staphylococci in orthopaedic surgical wounds. New Microbiol 24:365–369PubMedGoogle Scholar
  2. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47PubMedCrossRefGoogle Scholar
  3. Bahebeck J, Bedimo R, Eyenga V, Kouamfack C, Kingue T, Nierenet M, Sosso M (2004) The management of musculoskeletal infection in HIV carriers. Acta Orthop Belg 70:355–360PubMedGoogle Scholar
  4. Bass DA, DeChatelet LR, Burk RF, Shirley P, Szejda P (1977) Polymorphonuclear leukocyte bactericidal activity and oxidative metabolism during glutathione peroxidase deficiency. Infect Immun 18:78–84PubMedGoogle Scholar
  5. Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, Norman DC (1991) Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun 59:302–308PubMedGoogle Scholar
  6. Belzunegui J, Gonzalez C, Lopez L, Plazaola I, Maiz O, Figueroa M (1997) Osteoarticular and muscle infectious lesions in patients with the human immunodeficiency virus. Clin Rheumatol 16:450–453PubMedCrossRefGoogle Scholar
  7. Ben-Yehuda A, Weksler ME (1992) Host resistance and the immune system. Clin Geriatr Med 8:701–711PubMedGoogle Scholar
  8. Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM, Harmsen WS, Osmon DR (1998) Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 27:1247–1254PubMedCrossRefGoogle Scholar
  9. Biviji AA, Paiement GD, Steinbach LS (2002) Musculoskeletal manifestations of human immunodeficiency virus infection. J Am Acad Orthop Surg 10:312–320PubMedGoogle Scholar
  10. Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(pt 2):373–383PubMedCrossRefGoogle Scholar
  11. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984PubMedGoogle Scholar
  12. Brause BD (1986) Infections associated with prosthetic joints. Clin Rheum Dis 12:523–536PubMedGoogle Scholar
  13. Brown SM, Howell ML, Vasil ML, Anderson AJ, Hassett DJ (1995) Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536–6544PubMedGoogle Scholar
  14. Buommino E, Morelli F, Metafora S, Rossano F, Perfetto B, Baroni A, Tufano MA (1999) Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun 67:4794–4800PubMedGoogle Scholar
  15. Burrows LL, Stark M, Chan C, Glukhov E, Sinnadurai S, Deber CM (2006) Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. J Antimicrob Chemother 57:899–907PubMedCrossRefGoogle Scholar
  16. Burton E, Gawande PV, Yakandawala N, LoVertri K, Shanel GG, Romer T, Friesen AD, Madhyastha S (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50:1835–1840PubMedCrossRefGoogle Scholar
  17. Busscher HJ, Geertsema-Doornbusch GI, van der Mei HC (1997) Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: influence of salivary conditioning films. J Biomed Mater Res 34:201–209PubMedCrossRefGoogle Scholar
  18. Caraher EM, Gumulapurapu K, Taggart CC, Murphy P, McClean S, Callaghan M (2007) The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms. J Antimicrob Chemother 60:546–554PubMedCrossRefGoogle Scholar
  19. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Ann Rev Physiol 59:63–88CrossRefGoogle Scholar
  20. Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541PubMedCrossRefGoogle Scholar
  21. Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silverstri C, Licci A, Skerlavaj B, Zanetti M, Saba V, Scalise G (2006) Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides 27:2104–2110PubMedCrossRefGoogle Scholar
  22. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, Banerjee SN, Edwards JR, Tolson JS, Henderson TS (1991) Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 91:152S–157SPubMedCrossRefGoogle Scholar
  23. Cunnion KM, Lee JC, Frank MM (2001) Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect Immun 69:6796–6803PubMedCrossRefGoogle Scholar
  24. Dallegri F, Ottonello L (1997) Tissue injury in neutrophilic inflammation. Inflamm Res 46:382–391PubMedCrossRefGoogle Scholar
  25. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695PubMedCrossRefGoogle Scholar
  26. Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG (2003) Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett 544:129–132PubMedCrossRefGoogle Scholar
  27. Donabedian H, Gallin JI (1983) The hyperimmunoglobulin E recurrent-infection (Job’s) syndrome. A review of the NIH experience and the literature. Medicine 62:195–208PubMedCrossRefGoogle Scholar
  28. Doring G, Goldstein W, Roll A, Schiotz PO, Hoiby N, Botzenhart K (1985) Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562PubMedGoogle Scholar
  29. Dougherty SH, Simmons RL (1989) Endogenous factors contributing to prosthetic device infections. Infect Dis Clin North Am 3:199–209PubMedGoogle Scholar
  30. Dransfield I, Buckle AM, Savill JS, McDowall A, Haslett C, Hogg N (1994) Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol 153:1254–1263PubMedGoogle Scholar
  31. Duff GP, Lachiewicz PF, Kelley SS (1996) Aspiration of the knee joint before revision arthroplasty. Clin Orthop Relat Res 132–139Google Scholar
  32. Eberhard J, Menzel N, Dommisch H, Winter J, Jepsen S, Mutters R (2008) The stage of native biofilm formation determines the gene expression of human beta-defensin-2, psoriasin, ribonuclease 7 and inflammatory mediators: a novel approach for stimulation of keratinocytes with in situ formed biofilms. Oral Microbiol Immunol 23:21–28PubMedGoogle Scholar
  33. Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W (2006a) Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 50:3651–3657PubMedGoogle Scholar
  34. Eckert R, Brady KM, Greenberg EP, Qi F, Yarbrough DK, He J, McHardy I, Anderson MH, Shi W (2006b) Enhancement of antimicrobial activity against pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob Agents Chemother 50:3833–3838PubMedCrossRefGoogle Scholar
  35. Eckmann L (2005) Defence molecules in intestinal innate immunity against bacterial infections. Curr Opin Gastroenterol 21:147–151PubMedCrossRefGoogle Scholar
  36. Ellison RT III, Giehl TJ, LaForce FM (1988) Damage of the outer membrane of enteric gramnegative bacteria by lactoferrin and transferrin. Infect Immun 56:2774–2781PubMedGoogle Scholar
  37. Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172:4987–4994PubMedGoogle Scholar
  38. Epelman S, Stack D, Bell C, Wong E, Neely GG, Krutzik S, Miyake K, Kubes P, Zbytnuik LD, Ma LL, Xie X, Woods DE, Mody CH (2004) Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J Immunol 173:2031–2040PubMedGoogle Scholar
  39. Ernst RK, Hajjar AM, Tsai JH, Moskowitz SM, Wilson CB, Miller SI (2003) Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J Endotoxin Res 9:395–400PubMedGoogle Scholar
  40. Fedtke I, Gotz F, Peschel A (2004) Bacterial evasion of innate host defenses — the Staphylococcus aureus lesson. Int J Med Microbiol 294:189–194PubMedCrossRefGoogle Scholar
  41. Fick RB Jr, Baltimore RS, Squier SU, Reynolds HY (1985) IgG proteolytic activity of Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis 151:589–598PubMedGoogle Scholar
  42. Francois P, Vaudaux P, Lew PD (1998) Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann Vasc Surg 12:34–40PubMedCrossRefGoogle Scholar
  43. Frederiksen B, Koch C, Hoiby N (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23:330–335PubMedCrossRefGoogle Scholar
  44. Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098PubMedCrossRefGoogle Scholar
  45. Gill PJ, Goddard E, Beatty DW, Hoffman EB (1992) Chronic granulomatous disease presenting with osteomyelitis: favorable response to treatment with interferon-gamma. J Pediatr Orthop 12:398–400PubMedGoogle Scholar
  46. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574PubMedGoogle Scholar
  47. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713PubMedCrossRefGoogle Scholar
  48. Hassett DJ, Schweizer HP, Ohman DE (1995) Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330–6337PubMedGoogle Scholar
  49. Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased Superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003PubMedGoogle Scholar
  50. Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and Superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093PubMedCrossRefGoogle Scholar
  51. Hatti S, Ravindra S, Satpathy A, Kulkarni RD, Parande MV (2007) Biofilm inhibition and anti-microbial activity of a dentifrice containing salivary substitutes. Int J Dent Hyg 5:218–224PubMedCrossRefGoogle Scholar
  52. Hauber HP, Tulic MK, Tsicopoulos A, Wallaert B, Olivenstein R, Daigneault P, Hamid Q (2005) Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis. Can Respir J 12:13–18PubMedGoogle Scholar
  53. Haussier S, Tummler B, Weissbrodt H, Rohde M, Steinmetz I (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625Google Scholar
  54. Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301PubMedCrossRefGoogle Scholar
  55. Hoffmann JA (2003) The immune response of Drosophila. Nature 426(6962):33–38PubMedCrossRefGoogle Scholar
  56. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agent Chemother 51:3677–3687CrossRefGoogle Scholar
  57. Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D (1995) Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 85:532–540PubMedGoogle Scholar
  58. Hoyle BD, Jass J, Costerton JW (1990) The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother 26:1–6PubMedCrossRefGoogle Scholar
  59. Janatova J (2000) Activation and control of complement, inflammation, and infection associated with the use of biomedical polymers. ASAIO J 46:S53–S62PubMedCrossRefGoogle Scholar
  60. Jensen E, Kharazmi A, Hoiby N, Costerton J (1992) Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100:727–733PubMedGoogle Scholar
  61. Jensen E, Kharazmi A, Lam K, Costerton J, Hoiby N (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58:2383–2385PubMedGoogle Scholar
  62. Jensen ET, Kharazmi A, Garred P, Kronborg G, Fomsgaard A, Mollnes TE, Hoiby N (1993) Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 15:377–388PubMedCrossRefGoogle Scholar
  63. Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Giskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338PubMedCrossRefGoogle Scholar
  64. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4239–4239Google Scholar
  65. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176PubMedGoogle Scholar
  66. Johnston JW, Coussens NP, Allen S, Houtman JC, Turner KH, Zaleski A, Ramaswamy S, Gibson BW, Apicella MA (2008) Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283:855–865PubMedCrossRefGoogle Scholar
  67. Julia MR, Serra P, Matamoros N, Raga S, Martinez P (1998) Small cytoplasmic antigens from Pseudomonas aeruginosa stimulate gammadelta T lymphocytes. Scand J Immunol 48:672–678PubMedCrossRefGoogle Scholar
  68. Kaplanski G, Marin V, Montera-Julian F, Mantovani A, Farnarier C (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24:25–29PubMedCrossRefGoogle Scholar
  69. Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S (2000) Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 146:2531–2541PubMedGoogle Scholar
  70. Kazmierczak BI, Jou TS, Mostov K, Engel JN (2001) Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 3:85–98PubMedCrossRefGoogle Scholar
  71. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082PubMedGoogle Scholar
  72. Khanna G, Kao SC, Kirby P, Sato Y (2005) Imaging of chronic granulomatous disease in children. Radiographics 25:1183–1195PubMedCrossRefGoogle Scholar
  73. Kirchner KK, Wagener JS, Khan TZ, Copenhaver SC, Accurso FJ (1996) Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 154:1426–1429PubMedGoogle Scholar
  74. Kirschke H, Wiederanders B (1994) Cathepsin S and related lysosomal endopeptidases. Methods Enzymol 244:500–511PubMedCrossRefGoogle Scholar
  75. Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068PubMedCrossRefGoogle Scholar
  76. Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345PubMedCrossRefGoogle Scholar
  77. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysac-charide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518PubMedGoogle Scholar
  78. Leid JG, Cope EK, O’Toole G, Shirtliff M (2008) Flagella in P. aeruginosa mediates human leukocyte cytokine cross talk, production of lactoferrin, and bacterial biofilm killing. Submitted.Google Scholar
  79. Leitch EC, Willcox MD (1999a) Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol 48:867–871PubMedGoogle Scholar
  80. Leitch EC, Willcox MD (1999b) Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr Eye Res 19:12–19PubMedCrossRefGoogle Scholar
  81. Lorenz E, Chemotti DC, Vandal K, Tessier PA (2004) Toll-like receptor 2 represses nonpilus adhesin-induced signaling in acute infections with the Pseudomonas aeruginosa pilA mutant. Infect Immun 72:4561–4569PubMedCrossRefGoogle Scholar
  82. Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-l,2, 4-triazole. Biotechnol Bioeng 60:135PubMedCrossRefGoogle Scholar
  83. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R,Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135PubMedCrossRefGoogle Scholar
  84. Major NM, Tehranzadeh J (1997) Musculoskeletal manifestations of AIDS. Radiol Clin North Am 35:1167–1189PubMedGoogle Scholar
  85. Martinez LR, Casadevall A (2006) Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 74:6118–6123PubMedCrossRefGoogle Scholar
  86. Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazmi A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357PubMedGoogle Scholar
  87. Matsui H, Wagner VE, Hill DB, Schwab UE, Roges TD, Button B, Taylor RM II, Superfine R, Rubinstein M, Iglewski BH, Boucher RC (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103:18131–18136PubMedCrossRefGoogle Scholar
  88. Mattick JS (2002) Type IV pili and twitching motility. Ann Rev Microbiol 56:289–314CrossRefGoogle Scholar
  89. Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564–5574PubMedGoogle Scholar
  90. Melnikoff MJ, Horan PK, Morahan PS (1989) Kinetics of changes in peritoneal-cell populations following acute inflammation. Cell Immunol 118:178–191CrossRefGoogle Scholar
  91. Meluleni GJ, Grout M, Evans DJ, Pier GB (1995) Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 155:2029–2038PubMedGoogle Scholar
  92. Millian SJ, Baldwin JN, Rheins MS (1960) Studies on the incidence of coagulase-positive staphylococci in a normal unconfined population. Am J Pub Health 50:791PubMedCrossRefGoogle Scholar
  93. Mittal R, Chhibber S, Sharma S, Harjai K (2004) Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microb Infect 6:1326–1332CrossRefGoogle Scholar
  94. Naidu AS, Arnold RR (1994) Lactoferrin interaction with salmonellae potentiates antibiotic susceptibility in vitro. Diagn Microbiol Infect Dis 20:69–75PubMedCrossRefGoogle Scholar
  95. Na YJ, Han SB, Kang JS, Yoon YD, Park SK, Kim HM, Yang KH, Joe CO (2004) Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int Immunopharmacol 4:1187–1199PubMedCrossRefGoogle Scholar
  96. Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naive phenotype. J Immunol 162:3327–3335PubMedGoogle Scholar
  97. Oliver AM, Weir DM (1990) The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol 58:3363–3368Google Scholar
  98. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. New Engl J Med 347:1151–1160PubMedCrossRefGoogle Scholar
  99. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341:501–513PubMedCrossRefGoogle Scholar
  100. Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Micriobiol Immunol 306:251–258CrossRefGoogle Scholar
  101. Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS 28:1–79Google Scholar
  102. Pedersen SS, Moller H, Espersen F, Sorensen CH, Jensen T, Hoiby N (1992) Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. APMIS 100:326–338PubMedGoogle Scholar
  103. Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401PubMedCrossRefGoogle Scholar
  104. Perez-Payarols J, Julia Benique MR, Matamoros Flori N, Roman Pinana JM (1994) An increase in gamma-delta T-lymphocytes in the peripheral blood of cystic fibrosis patients. Ann Esp Pediatr 44:35–51Google Scholar
  105. Petanceska S, Canoll P, Devi LA (1996) Expression of rat cathepsin S in phagocytic cells. J Biol Chem 271:4403–4409PubMedCrossRefGoogle Scholar
  106. Pietarinen-Runtti P, Lakari E, Raivio KO, Kinnula VL (2000) Expression of antioxidant enzymes in human inflammatory cells. Am J Physiol 278:C118–C125Google Scholar
  107. Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ (2004) The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 279:49315–49322PubMedCrossRefGoogle Scholar
  108. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297PubMedCrossRefGoogle Scholar
  109. Restrepo CS, Lemos DF, Gordillo H, Odero R, Varghese T, Tiemann W, Rivas FF, Moncada R, Gimenez CR (2004) Imaging findings in musculoskeletal complications of AIDS. Radiographics 24:1029–1049PubMedCrossRefGoogle Scholar
  110. Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 189:107–115PubMedCrossRefGoogle Scholar
  111. Rodriguez W (1998) Musculoskeletal manifestations of HIV disease. AIDS Clin Care 10:49–51, 56PubMedCrossRefGoogle Scholar
  112. Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253PubMedCrossRefGoogle Scholar
  113. Roisman FR, Walz DT, Finkelstein AE (1983) Superoxide radical production by human leukocytes exposed to immune complexes: inhibitory action of gold compounds. Inflammation 7:355–362PubMedCrossRefGoogle Scholar
  114. Sadikot RT, Zeng H, Yull FE, Li B, Cheng DS, Kernodle DS, Jansen ED, Contag CH, Segal BH, Holland SM, Blackwell TS, Christman JW (2004) p47phox deficiency impairs NF-kappa B activation and host defense in Pseudomonas pneumonia. J Immunol 172:1801–1808PubMedGoogle Scholar
  115. Sadowska B, Bonar A, von Eiff C, Proctor RA, Chmiela M, Rudnicka W, Rozalska B (2002) Characteristics of Staphylococcus aureus, isolated from airways of cystic fibrosis patients, and their small colony variants. FEMS Immunol Med Microbiol 32:193–197CrossRefGoogle Scholar
  116. Sanderson PJ (1991) Infection in orthopaedic implants. J Hosp Infect 18(Suppl A):367–375PubMedCrossRefGoogle Scholar
  117. Santavirta S, Konttinen YT, Saito T, Gronblad M, Partio E, Kemppinen P, Rokkanen P (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg [Br] 72:597–600Google Scholar
  118. Santavirta S, Konttinen YT, Bergroth V, Gronblad M (1991) Lack of immune response to methyl methacrylate in lymphocyte cultures. Acta Orthopaed Scand 62:29–32CrossRefGoogle Scholar
  119. Sanyal D, Williams AJ, Johnson AP, George RC (1993) The emergence of vancomycin resistance in renal dialysis. J Hosp Infect 24:167–173PubMedGoogle Scholar
  120. Savill J (1997) Apoptosis in resolution of inflammation. Kidney Blood Pressure Res 61:375–380Google Scholar
  121. Schroder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46PubMedCrossRefGoogle Scholar
  122. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891PubMedGoogle Scholar
  123. Selan L, Passariello C, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller MC, Fiorani P, Rossolini GM (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359:2166–2168PubMedCrossRefGoogle Scholar
  124. Shapira L, Tepper P, Steinberg D (2000) The interactions of human neutrophils with the constitu- ents of an experimental dental biofilm. J Dental Res 79:1802–1807CrossRefGoogle Scholar
  125. Simmons WL, Dybvig K (2007) Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infect Immun 75:3696–3699PubMedCrossRefGoogle Scholar
  126. Simpson JA, Smith SE, Dean RT (1988) Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J Gen Microbiol 134:29–36PubMedGoogle Scholar
  127. Singh PK (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17:267–270PubMedCrossRefGoogle Scholar
  128. Singh PK, Parsed MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555PubMedCrossRefGoogle Scholar
  129. Singh PK, Parsek MR, Greenberg PE, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilms development. Nature 417:552–555PubMedCrossRefGoogle Scholar
  130. Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Nat Acad Sci USA 98:6901–6904PubMedCrossRefGoogle Scholar
  131. Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB (2004) Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 172:3377–3381PubMedGoogle Scholar
  132. Smith IM, Vickers AB (1960) Natural history of 338 treated and untreated patients with staphylococcal septicaemia. Lancet 1:1318–1322PubMedGoogle Scholar
  133. Smythe MA, Melendy S, Jahns B, Dmuchowski C (1993) An exploratory analysis of medication utilization in a medical intensive care unit. Crit Care Med 21:1319–1323PubMedCrossRefGoogle Scholar
  134. Sourmelis SG, Burke FD, Varian JP (1986) A review of total elbow arthroplasty and an early assessment of the Liverpool elbow prosthesis. J Hand Surg 11:407–413Google Scholar
  135. Speert DP, Loh BA, Cabrai DA, Salit IE (1986) Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and hydrophobicity. Infect Immun 53:207–212PubMedGoogle Scholar
  136. Steinbach LS, Tehranzadeh J, Fleckenstein JL, Vanarthos WJ, Pais MJ (1993) Human immunodeficiency virus infection: musculoskeletal manifestations. Radiology 186:833–838PubMedGoogle Scholar
  137. Steinberg D, Poran S, Shapira L (1999) The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. Arch Oral Biol 44:437–444PubMedCrossRefGoogle Scholar
  138. Stiver HG, Zachidniak K, Speert DP (1988) Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa. Clin Investig Med 11:247–252Google Scholar
  139. Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA (1984) Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis 149:523–531PubMedGoogle Scholar
  140. Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S, McElvaney NG (2003) Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937PubMedGoogle Scholar
  141. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376CrossRefGoogle Scholar
  142. Talpada M, Rauf SJ, Walling DM (2002) Primary Nocardia osteomyelitis as a presentation of AIDS. AIDS Read 12:75–78PubMedGoogle Scholar
  143. Tanigawa T, Kotake Y, Tanigawa M, Reinke LA (1995) Mutual contact of adherent polymorpho-nuclear leukocytes inhibits their generation of Superoxide. Free Rad Res 22:361–373CrossRefGoogle Scholar
  144. Tate S, MacGregor G, Davis M, Innes JA, Greening AP (2002) Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax 57:926–929PubMedCrossRefGoogle Scholar
  145. Tauber AI, Borregaard N, Simons E, Wright J (1983) Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine 62:286–309PubMedCrossRefGoogle Scholar
  146. Tehranzadeh J, O’Malley P, Rafii M (1996) The spectrum of osteoarticular and soft tissue changes in patients with human immunodeficiency virus (HIV) infection. Crit Rev Diagn Imag 37:305–347Google Scholar
  147. Tehranzadeh J, Ter-Oganesyan RR, Steinbach LS (2004) Musculoskeletal disorders associated with HIV infection and AIDS. Part I: infectious musculoskeletal conditions. Skeletal Radiol 33:249–259PubMedCrossRefGoogle Scholar
  148. Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696PubMedGoogle Scholar
  149. Tuazon CU, Sheagren JN (1974) Increased rate of carriage of Staphylococcus aureus among narcotic addicts. J Infect Dis 129:725–727PubMedGoogle Scholar
  150. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214PubMedGoogle Scholar
  151. Usher LR, Lawson RA, Geary I, Taylor CJ, Bingle CD, Taylor GW, Whyte MK (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868PubMedGoogle Scholar
  152. Valenti P, Greco R, Pitari G, Rossi P, Ajello M, Melino G, Antonini G (1999) Apoptosis of Caco-2 intestinal cells invaded by Listeria monocytogenes: protective effect of lactoferrin. Exp Cell Res 250:197–202PubMedCrossRefGoogle Scholar
  153. van Oss CJ (1978) Phagocytosis as a surface phenomenon. Ann Rev Microbiol 32:19–39CrossRefGoogle Scholar
  154. Vassilopoulos D, Chalasani P, Jurado RL, Workowski K, Agudelo CA (1997) Musculoskeletal infections in patients with human immunodeficiency virus infection. Medicine (Baltimore) 76:284–294CrossRefGoogle Scholar
  155. von Gotz F, Haussler S, Jordan D, Saravanamuthu SS, Wehmhoner D, Strussmann A, Lauber J, Attree I, Buer J, Tummler B, Steinmetz I (2004) Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 186:3837–3847CrossRefGoogle Scholar
  156. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275PubMedCrossRefGoogle Scholar
  157. Wagner C, Kondella K, Bernschneider T, Heppert V, Wentzensen A, Hansch GM (2003) Post-traumatic osteomyelitis: analysis of inflammatory cells recruited into the site of infection. Shock 20:503–510PubMedCrossRefGoogle Scholar
  158. Wagner C, Kaksa A, Muller W, Denefleh B, Heppert V, Wentzensen A, Hansch GM (2004) Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed site lack chemotactic activity but generate Superoxides. Shock 22:108–115PubMedCrossRefGoogle Scholar
  159. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1997) Prosthetic metals impair murine immune response and cytokine release in vivo and in vitro. J Orthop Res 15:688–699PubMedCrossRefGoogle Scholar
  160. Ward PA, Lentsch AB (1999) The acute inflammatory response and its regulation. Arch Surg 134:666–669PubMedCrossRefGoogle Scholar
  161. White CJ, Gallin JI (1986) Phagocyte defects. Clin Immunol Immunopath 40:50–61CrossRefGoogle Scholar
  162. Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Investig Dermatol 120:810–816PubMedCrossRefGoogle Scholar
  163. Zanetti M, Gennaro R, Skerlavaj B, Tomasinsig L, Circo R (2002) Cathelicidin peptides as candidates for a novel class of antimicrobials. Curr Pharma Design 8:779–793CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Biomedical Sciences, Dental SchoolUniversity of Maryland-BaltimoreBaltimoreUSA
  3. 3.Department of Microbial PathogenesisUniversity of Maryland - Baltimore, Dental SchoolBaltimoreUSA
  4. 4.Center for Microbial Genetics and GenomicsNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations