Abstract
Research scientists increasingly turn to large-scale heterogeneous environments such as computational grids and the Internet based facilities to satisfy their rapidly growing computational needs. The increasing complexity of the scientific models and rapid collection of new data are drastically outpacing the advances in processor speed while the cost of supercomputing environments remains relatively high. However, the heterogeneity and unreliability of these environments, especially the Internet, make scalable and fault tolerant search methods indispensable to effective scientific model verification. An effective search method for these types of environments is asynchronous genetic search, where a population continuously evolves based on asynchronously generated and received results. However, it is unclear what effect heterogeneity has on this type of search. For example, results received from slower workers may turn out to be obsolete or less beneficial than results calculated by faster workers. This paper examines the effect of heterogeneity on asynchronous panmictic (single population) genetic search for two different scientific applications, one used by astronomers to model the Milky Way galaxy and another by particle physicists to determine the existence of theory predicted, yet unobserved particles such as missing baryons. Results show that for both applications results received from slower workers while overall less beneficial are still useful. Additionally, a modification of asynchronous genetic search shows that different parameter generation strategies change their effectiveness over the course of the search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adelman-McCarthy, J.e.a.: The 6th Sloan Digital Sky Survey Data Release. ApJS, arXiv/0707.3413 (in press) (July 2007), http://www.sdss.org/dr6/
Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Transactions on Evolutionary Computation 9, 126–142 (2005)
Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Generation Computer Systems 17, 451–465 (2001)
Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for volunteer computing. In: e-Science, pp. 196–203. IEEE Computer Society, Los Alamitos (2005)
Berntsson, J., Tang, M.: A convergence model for asynchronous parallel genetic algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2627–2634 (December 2003)
Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work Stealing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), Santa Fe, New Mexico, pp. 356–368 (November 1994)
Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)
Desell, T., Cole, N., Magdon-Ismail, M., Newberg, H., Szymanski, B., Varela, C.: Distributed and generic maximum likelihood evaluation. In: 3rd IEEE International Conference on e-Science and Grid Computing (eScience 2007), Bangalore, India, p. 8 (December 2007) (to appear)
Dorronsoro, B., Alba, E.: A simple cellular genetic algorithm for continuous optimization. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp. 2838–2844 (July 2006)
Dorronsoro, B., Alba, E., Giacobini, M., Tomassini, M.: The influence of grid shape and asynchronicity on cellular evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 2152–2158 (June 2004)
Folino, G., Forestiero, A., Spezzano, G.: A JXTA based asynchronous peer-to-peer implementation of genetic programming. Journal of Software 1, 12–23 (2006)
Gong, L.: Jxta: A network programming environment. IEEE Internet Computing 5, 88–95 (2001)
Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A grid-oriented genetic algorithm framework for bioinformatics. New Generation Computing: Grid Systems for Life Sciences 22, 177–186 (2004)
Lewis, A., Abramson, D.: An evolutionary programming algorithm for multi-objective optimisation. In: IEEE Congress on Evolutionary Computation (CEC 2003), vol. 3, pp. 1926–1932 (December 2003)
Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B.-S.: Efficient hierarchical parallel genetic algorithms using grid computing. Future Generation Computer Systems 23, 658–670 (2007)
Peachey, T., Abramson, D., Lewis, A.: Model optimization and parameter estimation with Nimrod/O. In: International Conference on Computational Science, University of Reading, UK (May 2006)
Purnell, J., Magdon-Ismail, M., Newberg, H.J.: A probabilistic approach to finding geometric objects in spatial datasets of the Milky Way. In: Foundations of Intelligent Systems, vol. 3488, pp. 485–493. Springer, Heidelberg (2005)
Sinha, A., Goldberg, D.E.: A survey of hybrid genetic and evolutionary algorithms. Technical Report No. 2003004, Illinois Genetic Algorithms Laboratory (IlliGAL) (2003)
Wang, W., Maghraoui, K.E., Cummings, J., Napolitano, J., Szymanski, B., Varela, C.: A middleware framework for maximum likelihood evaluation over dynamic grids. In: Second IEEE International Conference on e-Science and Grid Computing, Amsterdam, Netherlands, p. 8 (December 2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szymanski, B.K., Desell, T., Varela, C. (2008). The Effects of Heterogeneity on Asynchronous Panmictic Genetic Search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-540-68111-3_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68105-2
Online ISBN: 978-3-540-68111-3
eBook Packages: Computer ScienceComputer Science (R0)