Skip to main content

A Reliable Extended Octree Representation of CSG Objects with an Adaptive Subdivision Depth

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

Abstract

Octrees are among the most widely used representations in geometric modeling systems, apart from Constructive Solid Geometry and Boundary Representations. An octree model is based on recursive cell decompositions of the space and does not depend greatly on the nature of the object but much more on the chosen maximum subdivision level. Unfortunately, an octree may require a large amount of memory when it uses a set of very small cubic nodes to approximate an object.

This paper is concerned with a novel generalization of the octree model that uses interval arithmetic and allows us to extend the tests for classifying points in space as inside, on or outside a CSG object to whole sections of the space at once. Tree nodes with additional information about relevant parts of the CSG object are introduced in order to reduce the depth of the required subdivision. The proposed extended octrees are compared with the common octree representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Brunet, P., Navazo, I.: Solid representation and operation using extended octrees. ACM Transactions on Graphics 9(2), 170–197 (1990)

    Article  MATH  Google Scholar 

  3. Carlbom, I., Chakravarty, I., Vanderschel, D.: A Hierarchical Data Structure for Representing the Spatial Decomposition of 3D Objects. IEEE Computer Graphics and Applicalions 5(4), 24–31 (1985)

    Google Scholar 

  4. Duff, T.: Interval arithmetic and recursive subdivision for implicit functions and constructive solid geometry. Computer Graphics 26(2), 131–138 (1992)

    Article  MathSciNet  Google Scholar 

  5. Dupont, L., Lazard, S., Petitjean, S.: Towards the robust intersection of implicit quadrics. In: Proc. of Workshop on Uncertainty in Geometric Computations, Sheeld, UK (2001)

    Google Scholar 

  6. Dürst, M.J., Kunii, T.L.: Integrated polytrees: a generalized model for integrating spatial decomposition and boundary representation. Technical Report 88-002, Department of Information Science, Faculty of Science, University of Tokyo (1988)

    Google Scholar 

  7. Dyllong, E., Grimm, C.: Verified Adaptive Octree Representations of Constructive Solid Geometry Objects. In: Simulation und Visualisierung 2007, pp. 223–235. SCS Publishing House e. V, San Diego, Erlangen (2007)

    Google Scholar 

  8. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing. Basic Numerical Problems. Springer, Berlin (1995)

    MATH  Google Scholar 

  9. Hoffmann, C.M.: Geometric and Solid Modeling. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  10. Lazarda, S., Penarandab, L.M., Petitjean, S.: Intersecting quadrics: an efficient and exact implementation. Computational Geometry 35(1-2), 74–99 (2006)

    Article  MathSciNet  Google Scholar 

  11. Levin, J.: Mathematical models for determining the intersections of quadric surfaces. Computer Graphics and Image Processing 11(1), 73–87 (1979)

    Article  Google Scholar 

  12. Lennerz, C.: Distance Computation for Extended Quadratic Complexes. PhD Thesis, Faculty of Computer Science, University of Saarland (2005)

    Google Scholar 

  13. Lennerz, C., Schömer, E.: Efficient distance computation for quadratic curves and surfaces. In: Proc. of IEEE Geometric Modeling and Processing, Los Alamitos, USA, pp. 60–69 (2002)

    Google Scholar 

  14. Miller, J.R.: Geometric Approaches to Nonplanar Quadric Surface Intersection Curves. ACM Transactions on Graphics 6(4), 274–307 (1987)

    Article  Google Scholar 

  15. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  16. Ratschek, H., Rokne, J.: Geometric computations with interval and new robust methods: applications in computer graphics, GIS and computational geometry. Horwood Publishing, Chichester (2003)

    MATH  Google Scholar 

  17. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley Publishing Company, Reading (1990)

    Google Scholar 

  18. Snyder, J.M.: Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design Using Interval Analysis. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  19. Wyvill, G., Kunii, T.L., Shirai, Y.: Space division for ray tracing in CSG. IEEE Computer Graphics and Applications 6(4), 28–34 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dyllong, E., Grimm, C. (2008). A Reliable Extended Octree Representation of CSG Objects with an Adaptive Subdivision Depth. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_142

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_142

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics