Skip to main content

Circadian Rhythms in Stomata: Physiological and Molecular Aspects

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883.

    Article  PubMed  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069.

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375.

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W-R, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281.

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR (2000) Cellular signalling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241.

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–341.

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Correia MJ, Pereira JS, Chaves MM, Rodrigues ML, Pacheco CA (1995) ABA xylem concentrations determine maximum daily leaf conductance of field grown Vitis vinefera L. plants. Plant Cell Environ 18:511–521.

    Article  CAS  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Wier I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signalling in stomatal guard cells. Plant Physiol 137:831–834.

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Parkinson K, Webb AAR (2004) Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis.New Phytol 162:63–70.

    Article  Google Scholar 

  • Dodd AN, Love J, Webb AA (2005a) The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci 10:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005b) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633.

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kyed Jakobsen M, Baker AJ, Telzerow A, Hou S-W, Laplaze L, Barrot L, Poethig RS, Haseloff JP, Webb AAR (2006) Time of day modulates Ca2+ signals in Arabidopsis. Plant J 48:962–973.

    Article  PubMed  CAS  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME, Hanno S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:159–162.

    Article  PubMed  CAS  Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816.

    Article  CAS  Google Scholar 

  • Fan LM, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signalling model. Curr Opin Plant Biol 7:537–546.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signalling pathways. Proc Natl Acad Sci USA 100:11116–11121.

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, Webb AAR (2006) How plants tell the time. Biochem J 397:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87:9645–9649.

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771.

    Article  PubMed  CAS  Google Scholar 

  • Gorton HL, Williams WE, Binns ME, Gemmell CN, Leheny EA, Shepherd AC (1989) Circadian stomatal rhythms in epidermal peels from Vicia faba. Plant Physiol 90:1329–1334.

    Article  PubMed  Google Scholar 

  • Gorton HL, Williams WE, Assmann SM (1993) Circadian rhythms in stomatal responsiveness to red and blue light. Plant Physiol 103:399–406.

    PubMed  CAS  Google Scholar 

  • Gosti F, Beudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) The ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1883–1896.

    Article  Google Scholar 

  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  • Grabov A, Blatt MR (1997) Parallel control of the inward rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201:84–95.

    Article  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972.

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113.

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:67–84.

    Article  Google Scholar 

  • Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102:10387–10392.

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892.

    PubMed  CAS  Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis: oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol 96:831–836.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM (2001) Guard cell signalling. Cell 107:711–714.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Grey JE, Leckie C, McAinsh MR, Ng C, Pical C, Priestley AJ, Staxén I, Webb AAR (1998) The control of specificity in guard cell signal transduction. Philos Trans R Soc Lond B. 353:1489–1494.

    Article  CAS  Google Scholar 

  • Hicks KA, Millar AJ, Carré IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792.

    Article  PubMed  CAS  Google Scholar 

  • Holmes MG, Klein WH (1986) Photocontrol of dark circadian rhythms in stomata of Phaseolus vulgaris L. Plant Physiol 82:28–33.

    Article  PubMed  CAS  Google Scholar 

  • Hosy E, Vavassuer A, Mouline K, Dreyer I, Gaymard I, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554.

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487.

    Article  PubMed  CAS  Google Scholar 

  • Ivashikina N, Deeken R, Fischer S, Ache P, Hedrich R (2005) AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J Gen Physiol 125:483–492.

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1865.

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412.

    Article  PubMed  CAS  Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Mishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of Fava bean. Plant Cell 7:1333–1342.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660.

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signalling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163.

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8¢-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860.

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8¢hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656.

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633.

    Article  PubMed  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842.

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816.

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearly CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 97:8687–8692.

    Article  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615.

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Phys Plant Mol Biol 49:199–222.

    Article  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208.

    Article  PubMed  CAS  Google Scholar 

  • Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005a) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1:2005.0013.

    Google Scholar 

  • Locke JCW, Millar AJ, Turner MS (2005b) Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234:383–393.

    Article  PubMed  CAS  Google Scholar 

  • Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 17:3257–3281.

    Google Scholar 

  • MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B 353:1475–1488.

    Article  CAS  Google Scholar 

  • Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012.

    Article  PubMed  Google Scholar 

  • Más P (2005) Circadian clock signalling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49:491–500.

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188.

    Article  CAS  Google Scholar 

  • McAinsh MR, Webb A, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7:1207–1219.

    Article  PubMed  CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720.

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene expression in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H-R, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629–641.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Nakamichi N (2005) Pseudo response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685.

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698.

    Article  PubMed  CAS  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599.

    Article  PubMed  CAS  Google Scholar 

  • Nováková M, Motyka V, Dobrev PI, Malbeck J, Gaudinová A, Vanková R (2005) Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. J Exp Bot 56: 2833–2877.

    Article  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664.

    Article  PubMed  CAS  Google Scholar 

  • Pallas JE Jr, Samish YB, Willmer CM (1974) Endogenous rhythmic activity of photosynthesis, transpiration, dark respiration and carbon dioxide compensation point of peanut leaves. Plant Physiol 53:907–911.

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+ activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Bruce VG (1959) Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In: Withrow RB (ed) Photoperiodism and related phenomena in plants and animals. AAAS, Washington, DC, pp 465–505.

    Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691.

    Article  PubMed  CAS  Google Scholar 

  • Salomé PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19:425–435.

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signalling. Plant Cell 14:S401–417.

    PubMed  CAS  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) LATE ELONGATED HYPOCOTYL, an Arabidopsis gene encoding a MYB transcription factor, regulates circadian rhythmicity and photoperiodic responses. Cell 93:1219–1229.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658.

    Article  PubMed  CAS  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe PJH, Wu H, Spence RD (1987) Stomatal mechanics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, CA, pp 91–114.

    Google Scholar 

  • Shope JC, Edwald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321.

    Article  PubMed  CAS  Google Scholar 

  • Snaith PJ, Mansfield TA (1985) Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm. J Exp Bot 36:937–944.

    Article  CAS  Google Scholar 

  • Snaith PJ, Mansfield TA (1986) The circadian rhythm of stomatal opening – evidence for the involvement of potassium and chloride fluxes. J Exp Bot 37:188–199.

    Article  Google Scholar 

  • Somers DE, Webb AAR, Pearson M, Kay SA (1998) The short-period mutant, toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494.

    PubMed  CAS  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependant control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782.

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Buttner M, Ache P, Hedriche R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N (2003) Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol 133:528–537.

    Article  PubMed  CAS  Google Scholar 

  • StÃ¥lfelt MG (1963) Diurnal dark reactions in the stomatal movements. Physiol Plant 16:756–766.

    Article  Google Scholar 

  • Staxén I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784.

    Article  PubMed  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771.

    Article  PubMed  CAS  Google Scholar 

  • Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci USA 95:11020–11025.

    Article  PubMed  CAS  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545.

    Article  PubMed  CAS  Google Scholar 

  • Tallman G (2004) Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55:1963–1976.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266.

    Article  PubMed  CAS  Google Scholar 

  • Thain SC, Murtas G, Lynn JR, McGrath RB, Millar AJ (2002) The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol 130:102–110.

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signalling in Arabidopsis guard cells. Science 292:2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683.

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR (1998) Stomatal rhythms. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS, Oxford, pp 69–80.

    Google Scholar 

  • Webb AAR (2003) The physiology of circadian rhythms in plants. New Phytol 160:281–303.

    Article  CAS  Google Scholar 

  • Webb AAR, Larman MG, Montgomery LT, Taylor JE, Hetherington AM (2001) The role of calcium in ABA-induced gene expression and stomatal movements. Plant J 26:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu J-K (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36.

    Article  PubMed  CAS  Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nature Rev Genet 2:702–715.

    Article  PubMed  CAS  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506–7511.

    Article  PubMed  CAS  Google Scholar 

  • Zhang SQ, Outlaw WH Jr (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ 24:1045–1054.

    Article  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Da1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hubbard, K.E. et al. (2007). Circadian Rhythms in Stomata: Physiological and Molecular Aspects. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_8

Download citation

Publish with us

Policies and ethics