Skip to main content

Modelling Oscillations of Membrane Potential Difference

  • Chapter
Book cover Rhythms in Plants
  • 839 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma. I. pH dependence. J Membr Biol 81:113–125

    Article  Google Scholar 

  • Beilby MJ (1985) Potassium channels at Chara plasmalemma. J Exp Bot 36:228–239

    Article  CAS  Google Scholar 

  • Beilby MJ (1990) Current-voltage curves for plant membrane studies: a critical analysis of the method. J Exp Bot 41:165–182

    Article  Google Scholar 

  • Beilby MJ, Bisson MA (1999) Transport systems of Ventricaria ventricosa: I/V analysis of both membranes in series as a function of [K+]o. J Membr Biol 171:63–73

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprotamnium papulosum: I. I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847

    Article  Google Scholar 

  • Beilby MJ, Shepherd VA (2001a) Modeling the current-voltage characteristics of charophyte membranes: II. The effect of salinity on membranes of Lamprothamnium papulosum. J Membr Biol 181:77–89

    PubMed  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2001b) Modeling the current-voltage characteristics of charophyte membranes: III. K+ state of Lamprothamnium. Austr J Plant Physiol 28:541–550

    CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2006a) The characteristics of Ca2+-activated Cl- channels of the salt-tolerant charophyte Lamprothamnium. Plant Cell Environ 29:764–777

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2006b) The electrophysiology of salt tolerance in charophytes. Cryptogamie Algologie 27:403–417

    Google Scholar 

  • Beilby MJ, Walker NA (1981) Chloride transport in Chara: I. Kinetics and current-voltage curves for a probable proton symport. J Exp Bot 32:43–54

    CAS  Google Scholar 

  • Beilby MJ, Walker NA (1996) Modeling the current-voltage characteristics of Chara membranes: I. The effect of ATP removal and zero turgor. J Membr Biol 149:89–101

    CAS  Google Scholar 

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Environ 22:347–360

    Article  CAS  Google Scholar 

  • Beilby MJ, Bisson MA, Shepherd VA (2006) Electrophysiology of turgor regulation in charophyte cells. In: Volkov AG (ed) Plant electrophysiology – theory and methods. Springer, Berlin Heidelberg New York, pp 375–406

    Chapter  Google Scholar 

  • Bisson MA (1986) Inhibitors of proton pumping. Effect on passive proton transport. Plant Physiol 81:55–59

    CAS  Google Scholar 

  • Bisson MA, Beilby MJ (2002) Transport systems of Ventricaria ventricosa: hypotonic and hypertonic turgor regulation. J Membr Biol 190:43–56

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA, Kirst GO (1980) Lamprothamnium, a euryhaline charophyte: I. Osmotic relations and membrane potential at steady state. J Exp Bot 31:1223–1235

    CAS  Google Scholar 

  • Bisson MA, Beilby MJ, Shepherd VA (2006) Electrophysiology of turgor regulation in marine siphonous green algae. J Membr Biol 211:1–14

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Beilby MJ, Tester M (1990) Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 114:205–223

    Article  PubMed  CAS  Google Scholar 

  • Coleman HA, Findlay GP (1985) Ion channels in the membrane of Chara inflata. J Membr Biol 83:109–118

    Article  CAS  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  • Hansen UP, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current-voltage relationships for “active” transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membr Biol 63:165–190

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto U (1966) Repetitive action potentials in Nitella internodes. Plant Cell Physiol 7:547–558

    CAS  Google Scholar 

  • Lucas WJ (1982) Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina. Planta 156:181–192

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  • Mimura T, Shimmen T, Tazawa M (1983) Dependence of the membrane potential on intracellular ATP concentration in tonoplast-free cells of Nitellopsis obtusa. Planta 157:97–104

    Article  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ (1999) The effect of an extracellular mucilage on the response to osmotic shock in the charophyte alga Lamprothamnium papulosum. J Membr Biol 170:229–242

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Heslop D (1999) Ecophysiology of the hypotonic response in the salt-tolerant charophyte alga Lamprothamnium papulosum. Plant Cell Environ 22:333–346

    Article  Google Scholar 

  • Shepherd VA, Shimmen T, Beilby MJ (2001) Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Austr J Plant Physiol 28:551–566

    CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Bisson MA (2004) When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 223:79–91

    Article  PubMed  CAS  Google Scholar 

  • Smith PT, Walker NA (1981) studies on the perfused plasmalemma of Chara corallina: I. Current-voltage curves: ATP and potassium dependence. J Membr Biol 60:223–236

    Article  CAS  Google Scholar 

  • Thiel G, Homann U, Gradmann D (1993) Microscopic elements of electrical excitation in Chara: transient activity of Cl- channels in the plasma membrane. J Membr Biol 134:53–66

    PubMed  CAS  Google Scholar 

  • Tyerman S (2002) Nonselective cation channels multiple functions and commonalities. Plant Physiol 128:327–328

    Article  CAS  Google Scholar 

  • Tyerman SD, Findlay GP, Paterson GJ (1986a) Inward membrane current in Chara inflata: I. A voltage- and time-dependent Cl- component. J Membr Biol 89:139–152

    Article  CAS  Google Scholar 

  • Tyerman SD, Findlay GP, Paterson GJ (1986b) Inward membrane current in Chara inflata: II. Effects of pH, Cl- channel blockers and NH4 + and significance for the hyperpolarized state. J Membr Biol 89:153–161

    Article  CAS  Google Scholar 

  • Tyerman SD, Beilby MJ, Whittington J, Juswono U, Newman I, Shabala S (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Austr J Plant Physiol 28:591–604

    CAS  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beilby, M.J. (2007). Modelling Oscillations of Membrane Potential Difference. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_16

Download citation

Publish with us

Policies and ethics