Skip to main content

Tracing the Hawaiian Mantle Plume by Converted Seismic Waves

  • Chapter

Abstract

Hotspots and seamount chains belong to the fundamental components of the global plate tectonics. The Hawaii-Emperor seamount chain is believed to have been created when the oceanic lithosphere continuously passed over a stationary mantle plume located under the Hawaiian islands. Hot buoyant material rises from great depth within a fixed narrow stem to the surface, penetrating the moving lithosphere and creating the volcanic seamounts and islands. We use teleseismic converted waves to look at the seismic velocity anomalies caused by the mantle plume from surface down to depths of the mantle transition zone. We applied the shear-wave (S) receiver function technique to map the thickness of the lithosphere. We found a gradual lithospheric thinning from the island of Hawaii (∼100 km thickness) along the island chain to Kauai (∼60 km thickness) with a width of about 300 km. In this zone our data favour the rejuvenation model, in which the plume returns the lithosphere to conditions close to the ocean ridge. The analysis of the P-to-S converted waves indicates an additional zone of very low S-wave velocity starting at a depth of 130–140 km beneath the central part of the island of Hawaii. We also see in the P-to-S conversions that the upper mantle transition zone is thinned by up to ∼40 km to the southwest of the island of Hawaii. We interpret these observations as localized effects of the Hawaiian plume conduit in the asthenosphere and the mantle transition zone with an excess temperature of 300 °C. The large variation in the transition zone thickness suggests a lower mantle origin of the Hawaiian plume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DL (2000) Thermal state of the upper mantle: No role for mantle plumes. Geophys Res Lett 27:3623–3626.

    Article  Google Scholar 

  • Bijwaard H, Spakman W, Engdahl ER (1998) Closing the gap between regional and global travel time tomography. J Geophys Res 103:30055–30078.

    Article  Google Scholar 

  • Bina CR, Helffrich G (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res 99:15853–15860.

    Article  Google Scholar 

  • Bock G (1991) Long-period S to P converted waves and the onset of partial melting beneath Oahu, Hawaii. Geophys Res Lett 18:869–872.

    Google Scholar 

  • Burdick LJ, Langston CA (1977) Modeling crust-structure though the use of converted phases in teleseismic body-waveforms. Bull Seism Soc Am 67:677–691.

    Google Scholar 

  • DeMets C, Gordon G, Argus DF, Stein S (1990) Current plate motion. Geophys J Int 101:425–478.

    Article  Google Scholar 

  • Detrick RS, Crough ST (1978) Island subsidence, hot spots, and lithospheric thinning. J Geophys Res 83:1236–1244.

    Google Scholar 

  • Ekström G (2000) Mapping the lithosphere and asthenosphere with surface waves: Lateral structure and anisotropy. In: Richards MA, Gordon RG and van der Hilst RD (eds) History and dynamics of global plate motions, AGU monograph, pp 239–255.

    Google Scholar 

  • Ekström G, Dziewonski AM (1998) The unique anisotropy of the Pacific upper mantle. Nature 394:168–172.

    Article  Google Scholar 

  • Farra V, Vinnik L (2000) Upper mantle stratification by P and S receiver functions. Geophys J Int 141:699–712.

    Article  Google Scholar 

  • Flanagan MP, Shearer PM (1998) Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J Geophys Res 103:2673–2692.

    Article  Google Scholar 

  • Foulger GR, Natland JH (2003) Is “hotspot” volcanism a consequence of plate tectonics? Science 300:921–922.

    Article  Google Scholar 

  • Grand SP (1994) Mantle shear structure beneath the Americas and surrounding oceans. J Geophys Res 99:11591–11621.

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229.

    Article  Google Scholar 

  • Ji Y, Nataf H-C (1998) Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet Sci Lett 159:99–115.

    Article  Google Scholar 

  • Jordan TH (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In: Boyd FR and Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics, Proc 2nd International Kimberlite Conference, AGU monograph, pp 1–14.

    Google Scholar 

  • Karato S (1993) Importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626.

    Google Scholar 

  • Karato S, Jung H (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett 157:193–207.

    Article  Google Scholar 

  • Kind R, Yuan X, Saul J, Nelson D, Sobolev SV, Mechie J, Zhao W, Kosarev, G, Ni J, Achauer, U, Jiang M (2002) Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science 298:1219–1221.

    Article  Google Scholar 

  • Larson R, Erba E, Nakanishi M, Bergersen DD, Lincoln JM (1995) Stratigraphic, vertical subsidence, and paleolatitude histories of leg 144 guyots. In Haggerty JA, Premoli Silva I, Rack F and McNutt MK (eds) Proc ODP, Sci Results, vol 144, College Station, TX, pp 915–933.

    Google Scholar 

  • Laske G, Morgan JP, Orcutt JA (1999) First results from the Hawaiian SWELL pilot experiment. Geophys Res Lett 26:3397–3400.

    Article  Google Scholar 

  • Li X, Kind R, Priestley K, Sobolev SV, Tilmann F, Yuan X, Weber M (2000) Mapping the Hawaiian plume with converted seismic waves. Nature 405:938–941.

    Article  Google Scholar 

  • Li X, Kind R, Yuan X, Wölbern I, Hanka W (2004) Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427:827–829.

    Article  Google Scholar 

  • Lindwall DA (1988) A Two-Dimensional Seismic Investigation of Crustal Structure Under the Hawaiian Islands Near Oahu and Kauai. J Geophys Res 93:12107–12122.

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variaty of plumes in the mantle. Science 303:338–343.

    Article  Google Scholar 

  • Morgan WJ (1971) Convective plumes in the lower mantle. Nature 230:42–43.

    Article  Google Scholar 

  • Morgan JP, Morgan WJ, Price E (1995) Hotspot melting generates both hotspot volcanism and a hotspot swell? J Geophys Res 100:8054–8062.

    Google Scholar 

  • Nataf H-C (2000) Seismic Imaging of Mantle Plumes. Ann Rev Earth Planet Sci 28: 391–417.

    Article  Google Scholar 

  • Nishimura C, Forsyth D (1988) Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneities. Geophys J Int 94:479–501.

    Article  Google Scholar 

  • Priestley K, Tilmann F (1999) Shear-wave structure of the lithosphere above the Hawaiian hot spot from two-station Rayleigh wave phase velocity measurements. Geophys Res Lett 26:1493–1496.

    Article  Google Scholar 

  • Raymond CA, Stock JM, Cande SC (2000) Fast Paloegene motion of the Pacific hotspots from revised global plate circuit constraints. In: Richards MA, Gordon RG and van der Hilst RD (eds) History and dynamics of global plate motions, AGU monograph, pp 359–375.

    Google Scholar 

  • Ribe NM, Christensen UR (1994) Melt generation by plumes: a study of Hawaiian volcanism. J Geophys Res 99:669–682.

    Article  Google Scholar 

  • Ribe NM, Christensen UR (1999) The dynamical origin of the Hawaiian volcanism. Earth Planet Sci Lett 171:517–531.

    Article  Google Scholar 

  • Robinson EM (1988) The topographic and gravitational expression of density anomalies due to melt extraction in the uppermost oceanic mantle. Earth Planet Sci Lett 90:221–228.

    Article  Google Scholar 

  • Russel SA, Lay T, Garnero EJ (1998) Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot. Nature 396:255–258.

    Article  Google Scholar 

  • Shen Y, Solomon SC, Bjarnason IT, Wolfe CJ (1998) Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395:62–65.

    Article  Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: Some phenomenology. J Geophys Res 95:6715–6736.

    Article  Google Scholar 

  • Sobolev AV, Nikogosian IK (1994) Petrology of long-lived mantle plume magmatism: Hawaii, Pacific and Reunion Island, Indian Ocean. Petrology 2:111–144.

    Google Scholar 

  • Sobolev SV, Zeyen H, Stoll G, Werling F, Altherr R, Fuchs K (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139:147–163.

    Article  Google Scholar 

  • Vinnik L, Farra V (2002) Subcratonic low-velocity layer and flood basalts. Geophys Res Lett 29:1049, 10.1029/2001GL014064.

    Article  Google Scholar 

  • Watson S, McKenzie DP (1991) Melt generation by plumes: a study of Hawaiian mechanism. J Petrol 32:501–537.

    Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawaiian island. Can J Phys 41:863–868.

    Google Scholar 

  • Wolfe CJ, Solomon SC, Silver PG, VanDecar JC, Russo RM (2002) Inversion of body wave delay times for mantle structure beneath the Hawaiian islands: results from the PELENET experiment. Earth planet Sci Lett 198:129–145.

    Article  Google Scholar 

  • Woods MT, Okal EA (1996) Rayleigh-wave dispersion along the Hawaiian Swell: a test of lithospheric thinning by the thermal rejuvenation at a hotspot. Geophys J Int 125:325–339.

    Article  Google Scholar 

  • Woods MT, Lévêque J-J, Okal EA (1991) Two-station measurements of Rayleigh wave group velocity along the Hawai’ian swell. Geophys Res Lett 18:105–108.

    Google Scholar 

  • Yuan X, Ni J, Kind R, Mechie J, Sandvol E (1997) Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J Geophys Res 102:27491–27500.

    Article  Google Scholar 

  • Yuan X, Kind R, Li X, Wang R (2006) The S receiver functions: synthetics and data example. Geophy. J. Int. 165:555–564.

    Article  Google Scholar 

  • Zhao D (2004) Global tomograpic images of mantle plumes and subduction slabs: insight into deep Earth dynamics. Phys Earth Planet Inter 146:3–34.

    Article  Google Scholar 

  • Zucca JJ, Hill DP (1980) Crustal Structure of the Southeast Flank of Kilauea Volcano, Hawaii, From Seismic Refraction Measurements. Bull Seismol Soc Am 70:1149–1159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuan, X., Li, X., Wölbern, I., Kind, R. (2007). Tracing the Hawaiian Mantle Plume by Converted Seismic Waves. In: Ritter, J.R.R., Christensen, U.R. (eds) Mantle Plumes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68046-8_2

Download citation

Publish with us

Policies and ethics